This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Definitional property of the S.2 integral: for any function F there is a countable sequence g of simple functions less than F whose integrals converge to the integral of F . (This theorem is for the most part unnecessary in lieu of itg2i1fseq , but unlike that theorem this one doesn't require F to be measurable.) (Contributed by Mario Carneiro, 14-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | itg2seq | ⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ∃ 𝑔 ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ ( ∫2 ‘ 𝐹 ) = sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnre | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ ) | |
| 2 | 1 | ad2antlr | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑛 ∈ ℕ ) ∧ ( ∫2 ‘ 𝐹 ) = +∞ ) → 𝑛 ∈ ℝ ) |
| 3 | 2 | ltpnfd | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑛 ∈ ℕ ) ∧ ( ∫2 ‘ 𝐹 ) = +∞ ) → 𝑛 < +∞ ) |
| 4 | iftrue | ⊢ ( ( ∫2 ‘ 𝐹 ) = +∞ → if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) = 𝑛 ) | |
| 5 | 4 | adantl | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑛 ∈ ℕ ) ∧ ( ∫2 ‘ 𝐹 ) = +∞ ) → if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) = 𝑛 ) |
| 6 | simpr | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑛 ∈ ℕ ) ∧ ( ∫2 ‘ 𝐹 ) = +∞ ) → ( ∫2 ‘ 𝐹 ) = +∞ ) | |
| 7 | 3 5 6 | 3brtr4d | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑛 ∈ ℕ ) ∧ ( ∫2 ‘ 𝐹 ) = +∞ ) → if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫2 ‘ 𝐹 ) ) |
| 8 | iffalse | ⊢ ( ¬ ( ∫2 ‘ 𝐹 ) = +∞ → if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) = ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) | |
| 9 | 8 | adantl | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑛 ∈ ℕ ) ∧ ¬ ( ∫2 ‘ 𝐹 ) = +∞ ) → if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) = ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) |
| 10 | itg2cl | ⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ( ∫2 ‘ 𝐹 ) ∈ ℝ* ) | |
| 11 | xrrebnd | ⊢ ( ( ∫2 ‘ 𝐹 ) ∈ ℝ* → ( ( ∫2 ‘ 𝐹 ) ∈ ℝ ↔ ( -∞ < ( ∫2 ‘ 𝐹 ) ∧ ( ∫2 ‘ 𝐹 ) < +∞ ) ) ) | |
| 12 | 10 11 | syl | ⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ( ( ∫2 ‘ 𝐹 ) ∈ ℝ ↔ ( -∞ < ( ∫2 ‘ 𝐹 ) ∧ ( ∫2 ‘ 𝐹 ) < +∞ ) ) ) |
| 13 | itg2ge0 | ⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → 0 ≤ ( ∫2 ‘ 𝐹 ) ) | |
| 14 | mnflt0 | ⊢ -∞ < 0 | |
| 15 | mnfxr | ⊢ -∞ ∈ ℝ* | |
| 16 | 0xr | ⊢ 0 ∈ ℝ* | |
| 17 | xrltletr | ⊢ ( ( -∞ ∈ ℝ* ∧ 0 ∈ ℝ* ∧ ( ∫2 ‘ 𝐹 ) ∈ ℝ* ) → ( ( -∞ < 0 ∧ 0 ≤ ( ∫2 ‘ 𝐹 ) ) → -∞ < ( ∫2 ‘ 𝐹 ) ) ) | |
| 18 | 15 16 10 17 | mp3an12i | ⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ( ( -∞ < 0 ∧ 0 ≤ ( ∫2 ‘ 𝐹 ) ) → -∞ < ( ∫2 ‘ 𝐹 ) ) ) |
| 19 | 14 18 | mpani | ⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ( 0 ≤ ( ∫2 ‘ 𝐹 ) → -∞ < ( ∫2 ‘ 𝐹 ) ) ) |
| 20 | 13 19 | mpd | ⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → -∞ < ( ∫2 ‘ 𝐹 ) ) |
| 21 | 20 | biantrurd | ⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ( ( ∫2 ‘ 𝐹 ) < +∞ ↔ ( -∞ < ( ∫2 ‘ 𝐹 ) ∧ ( ∫2 ‘ 𝐹 ) < +∞ ) ) ) |
| 22 | nltpnft | ⊢ ( ( ∫2 ‘ 𝐹 ) ∈ ℝ* → ( ( ∫2 ‘ 𝐹 ) = +∞ ↔ ¬ ( ∫2 ‘ 𝐹 ) < +∞ ) ) | |
| 23 | 10 22 | syl | ⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ( ( ∫2 ‘ 𝐹 ) = +∞ ↔ ¬ ( ∫2 ‘ 𝐹 ) < +∞ ) ) |
| 24 | 23 | con2bid | ⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ( ( ∫2 ‘ 𝐹 ) < +∞ ↔ ¬ ( ∫2 ‘ 𝐹 ) = +∞ ) ) |
| 25 | 12 21 24 | 3bitr2rd | ⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ( ¬ ( ∫2 ‘ 𝐹 ) = +∞ ↔ ( ∫2 ‘ 𝐹 ) ∈ ℝ ) ) |
| 26 | 25 | biimpa | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ¬ ( ∫2 ‘ 𝐹 ) = +∞ ) → ( ∫2 ‘ 𝐹 ) ∈ ℝ ) |
| 27 | 26 | adantlr | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑛 ∈ ℕ ) ∧ ¬ ( ∫2 ‘ 𝐹 ) = +∞ ) → ( ∫2 ‘ 𝐹 ) ∈ ℝ ) |
| 28 | nnrp | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ+ ) | |
| 29 | 28 | rpreccld | ⊢ ( 𝑛 ∈ ℕ → ( 1 / 𝑛 ) ∈ ℝ+ ) |
| 30 | 29 | ad2antlr | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑛 ∈ ℕ ) ∧ ¬ ( ∫2 ‘ 𝐹 ) = +∞ ) → ( 1 / 𝑛 ) ∈ ℝ+ ) |
| 31 | 27 30 | ltsubrpd | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑛 ∈ ℕ ) ∧ ¬ ( ∫2 ‘ 𝐹 ) = +∞ ) → ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) < ( ∫2 ‘ 𝐹 ) ) |
| 32 | 9 31 | eqbrtrd | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑛 ∈ ℕ ) ∧ ¬ ( ∫2 ‘ 𝐹 ) = +∞ ) → if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫2 ‘ 𝐹 ) ) |
| 33 | 7 32 | pm2.61dan | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑛 ∈ ℕ ) → if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫2 ‘ 𝐹 ) ) |
| 34 | nnrecre | ⊢ ( 𝑛 ∈ ℕ → ( 1 / 𝑛 ) ∈ ℝ ) | |
| 35 | 34 | ad2antlr | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑛 ∈ ℕ ) ∧ ¬ ( ∫2 ‘ 𝐹 ) = +∞ ) → ( 1 / 𝑛 ) ∈ ℝ ) |
| 36 | 27 35 | resubcld | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑛 ∈ ℕ ) ∧ ¬ ( ∫2 ‘ 𝐹 ) = +∞ ) → ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ∈ ℝ ) |
| 37 | 2 36 | ifclda | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑛 ∈ ℕ ) → if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ∈ ℝ ) |
| 38 | 37 | rexrd | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑛 ∈ ℕ ) → if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ∈ ℝ* ) |
| 39 | 10 | adantr | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑛 ∈ ℕ ) → ( ∫2 ‘ 𝐹 ) ∈ ℝ* ) |
| 40 | xrltnle | ⊢ ( ( if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ∈ ℝ* ∧ ( ∫2 ‘ 𝐹 ) ∈ ℝ* ) → ( if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫2 ‘ 𝐹 ) ↔ ¬ ( ∫2 ‘ 𝐹 ) ≤ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ) ) | |
| 41 | 38 39 40 | syl2anc | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑛 ∈ ℕ ) → ( if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫2 ‘ 𝐹 ) ↔ ¬ ( ∫2 ‘ 𝐹 ) ≤ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ) ) |
| 42 | 33 41 | mpbid | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑛 ∈ ℕ ) → ¬ ( ∫2 ‘ 𝐹 ) ≤ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ) |
| 43 | itg2leub | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ∈ ℝ* ) → ( ( ∫2 ‘ 𝐹 ) ≤ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ↔ ∀ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 → ( ∫1 ‘ 𝑓 ) ≤ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ) ) ) | |
| 44 | 38 43 | syldan | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑛 ∈ ℕ ) → ( ( ∫2 ‘ 𝐹 ) ≤ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ↔ ∀ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 → ( ∫1 ‘ 𝑓 ) ≤ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ) ) ) |
| 45 | 42 44 | mtbid | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑛 ∈ ℕ ) → ¬ ∀ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 → ( ∫1 ‘ 𝑓 ) ≤ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ) ) |
| 46 | rexanali | ⊢ ( ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ ¬ ( ∫1 ‘ 𝑓 ) ≤ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ) ↔ ¬ ∀ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 → ( ∫1 ‘ 𝑓 ) ≤ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ) ) | |
| 47 | 45 46 | sylibr | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑛 ∈ ℕ ) → ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ ¬ ( ∫1 ‘ 𝑓 ) ≤ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ) ) |
| 48 | itg1cl | ⊢ ( 𝑓 ∈ dom ∫1 → ( ∫1 ‘ 𝑓 ) ∈ ℝ ) | |
| 49 | ltnle | ⊢ ( ( if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ∈ ℝ ∧ ( ∫1 ‘ 𝑓 ) ∈ ℝ ) → ( if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ 𝑓 ) ↔ ¬ ( ∫1 ‘ 𝑓 ) ≤ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ) ) | |
| 50 | 37 48 49 | syl2an | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑓 ∈ dom ∫1 ) → ( if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ 𝑓 ) ↔ ¬ ( ∫1 ‘ 𝑓 ) ≤ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ) ) |
| 51 | 50 | anbi2d | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑓 ∈ dom ∫1 ) → ( ( 𝑓 ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ 𝑓 ) ) ↔ ( 𝑓 ∘r ≤ 𝐹 ∧ ¬ ( ∫1 ‘ 𝑓 ) ≤ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ) ) ) |
| 52 | 51 | rexbidva | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑛 ∈ ℕ ) → ( ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ 𝑓 ) ) ↔ ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ ¬ ( ∫1 ‘ 𝑓 ) ≤ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ) ) ) |
| 53 | 47 52 | mpbird | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑛 ∈ ℕ ) → ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ 𝑓 ) ) ) |
| 54 | 53 | ralrimiva | ⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ∀ 𝑛 ∈ ℕ ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ 𝑓 ) ) ) |
| 55 | ovex | ⊢ ( ℝ ↑m ℝ ) ∈ V | |
| 56 | i1ff | ⊢ ( 𝑥 ∈ dom ∫1 → 𝑥 : ℝ ⟶ ℝ ) | |
| 57 | reex | ⊢ ℝ ∈ V | |
| 58 | 57 57 | elmap | ⊢ ( 𝑥 ∈ ( ℝ ↑m ℝ ) ↔ 𝑥 : ℝ ⟶ ℝ ) |
| 59 | 56 58 | sylibr | ⊢ ( 𝑥 ∈ dom ∫1 → 𝑥 ∈ ( ℝ ↑m ℝ ) ) |
| 60 | 59 | ssriv | ⊢ dom ∫1 ⊆ ( ℝ ↑m ℝ ) |
| 61 | 55 60 | ssexi | ⊢ dom ∫1 ∈ V |
| 62 | nnenom | ⊢ ℕ ≈ ω | |
| 63 | breq1 | ⊢ ( 𝑓 = ( 𝑔 ‘ 𝑛 ) → ( 𝑓 ∘r ≤ 𝐹 ↔ ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ) ) | |
| 64 | fveq2 | ⊢ ( 𝑓 = ( 𝑔 ‘ 𝑛 ) → ( ∫1 ‘ 𝑓 ) = ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) | |
| 65 | 64 | breq2d | ⊢ ( 𝑓 = ( 𝑔 ‘ 𝑛 ) → ( if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ 𝑓 ) ↔ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) |
| 66 | 63 65 | anbi12d | ⊢ ( 𝑓 = ( 𝑔 ‘ 𝑛 ) → ( ( 𝑓 ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ 𝑓 ) ) ↔ ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) |
| 67 | 61 62 66 | axcc4 | ⊢ ( ∀ 𝑛 ∈ ℕ ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ 𝑓 ) ) → ∃ 𝑔 ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) |
| 68 | 54 67 | syl | ⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ∃ 𝑔 ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) |
| 69 | simprl | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) → 𝑔 : ℕ ⟶ dom ∫1 ) | |
| 70 | simpl | ⊢ ( ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) → ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ) | |
| 71 | 70 | ralimi | ⊢ ( ∀ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) → ∀ 𝑛 ∈ ℕ ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ) |
| 72 | 71 | ad2antll | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) → ∀ 𝑛 ∈ ℕ ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ) |
| 73 | 10 | adantr | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) → ( ∫2 ‘ 𝐹 ) ∈ ℝ* ) |
| 74 | ffvelcdm | ⊢ ( ( 𝑔 : ℕ ⟶ dom ∫1 ∧ 𝑛 ∈ ℕ ) → ( 𝑔 ‘ 𝑛 ) ∈ dom ∫1 ) | |
| 75 | itg1cl | ⊢ ( ( 𝑔 ‘ 𝑛 ) ∈ dom ∫1 → ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ∈ ℝ ) | |
| 76 | 74 75 | syl | ⊢ ( ( 𝑔 : ℕ ⟶ dom ∫1 ∧ 𝑛 ∈ ℕ ) → ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ∈ ℝ ) |
| 77 | 76 | fmpttd | ⊢ ( 𝑔 : ℕ ⟶ dom ∫1 → ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) : ℕ ⟶ ℝ ) |
| 78 | 77 | ad2antrl | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) → ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) : ℕ ⟶ ℝ ) |
| 79 | 78 | frnd | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) → ran ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ⊆ ℝ ) |
| 80 | ressxr | ⊢ ℝ ⊆ ℝ* | |
| 81 | 79 80 | sstrdi | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) → ran ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ⊆ ℝ* ) |
| 82 | supxrcl | ⊢ ( ran ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ⊆ ℝ* → sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) ∈ ℝ* ) | |
| 83 | 81 82 | syl | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) → sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) ∈ ℝ* ) |
| 84 | 38 | adantlr | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑔 : ℕ ⟶ dom ∫1 ) ∧ 𝑛 ∈ ℕ ) → if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ∈ ℝ* ) |
| 85 | 76 | adantll | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑔 : ℕ ⟶ dom ∫1 ) ∧ 𝑛 ∈ ℕ ) → ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ∈ ℝ ) |
| 86 | 85 | rexrd | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑔 : ℕ ⟶ dom ∫1 ) ∧ 𝑛 ∈ ℕ ) → ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ∈ ℝ* ) |
| 87 | xrltle | ⊢ ( ( if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ∈ ℝ* ∧ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ∈ ℝ* ) → ( if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) → if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) | |
| 88 | 84 86 87 | syl2anc | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑔 : ℕ ⟶ dom ∫1 ) ∧ 𝑛 ∈ ℕ ) → ( if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) → if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) |
| 89 | 2fveq3 | ⊢ ( 𝑛 = 𝑚 → ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) = ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) | |
| 90 | 89 | cbvmptv | ⊢ ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) = ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) |
| 91 | 90 | rneqi | ⊢ ran ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) = ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) |
| 92 | 77 | adantl | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑔 : ℕ ⟶ dom ∫1 ) → ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) : ℕ ⟶ ℝ ) |
| 93 | 92 | frnd | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑔 : ℕ ⟶ dom ∫1 ) → ran ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ⊆ ℝ ) |
| 94 | 93 80 | sstrdi | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑔 : ℕ ⟶ dom ∫1 ) → ran ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ⊆ ℝ* ) |
| 95 | 94 | adantr | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑔 : ℕ ⟶ dom ∫1 ) ∧ 𝑛 ∈ ℕ ) → ran ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ⊆ ℝ* ) |
| 96 | 91 95 | eqsstrrid | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑔 : ℕ ⟶ dom ∫1 ) ∧ 𝑛 ∈ ℕ ) → ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) ⊆ ℝ* ) |
| 97 | 2fveq3 | ⊢ ( 𝑚 = 𝑛 → ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) = ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) | |
| 98 | eqid | ⊢ ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) = ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) | |
| 99 | fvex | ⊢ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ∈ V | |
| 100 | 97 98 99 | fvmpt | ⊢ ( 𝑛 ∈ ℕ → ( ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) ‘ 𝑛 ) = ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) |
| 101 | fvex | ⊢ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ∈ V | |
| 102 | 101 98 | fnmpti | ⊢ ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) Fn ℕ |
| 103 | fnfvelrn | ⊢ ( ( ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) Fn ℕ ∧ 𝑛 ∈ ℕ ) → ( ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) ‘ 𝑛 ) ∈ ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) ) | |
| 104 | 102 103 | mpan | ⊢ ( 𝑛 ∈ ℕ → ( ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) ‘ 𝑛 ) ∈ ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) ) |
| 105 | 100 104 | eqeltrrd | ⊢ ( 𝑛 ∈ ℕ → ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ∈ ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) ) |
| 106 | 105 | adantl | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑔 : ℕ ⟶ dom ∫1 ) ∧ 𝑛 ∈ ℕ ) → ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ∈ ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) ) |
| 107 | supxrub | ⊢ ( ( ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) ⊆ ℝ* ∧ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ∈ ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) ) → ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ≤ sup ( ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) ) | |
| 108 | 96 106 107 | syl2anc | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑔 : ℕ ⟶ dom ∫1 ) ∧ 𝑛 ∈ ℕ ) → ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ≤ sup ( ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) ) |
| 109 | 91 | supeq1i | ⊢ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) = sup ( ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) |
| 110 | 95 82 | syl | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑔 : ℕ ⟶ dom ∫1 ) ∧ 𝑛 ∈ ℕ ) → sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) ∈ ℝ* ) |
| 111 | 109 110 | eqeltrrid | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑔 : ℕ ⟶ dom ∫1 ) ∧ 𝑛 ∈ ℕ ) → sup ( ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) ∈ ℝ* ) |
| 112 | xrletr | ⊢ ( ( if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ∈ ℝ* ∧ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ∈ ℝ* ∧ sup ( ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) ∈ ℝ* ) → ( ( if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ∧ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ≤ sup ( ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) ) → if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ sup ( ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) ) ) | |
| 113 | 84 86 111 112 | syl3anc | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑔 : ℕ ⟶ dom ∫1 ) ∧ 𝑛 ∈ ℕ ) → ( ( if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ∧ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ≤ sup ( ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) ) → if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ sup ( ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) ) ) |
| 114 | 108 113 | mpan2d | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑔 : ℕ ⟶ dom ∫1 ) ∧ 𝑛 ∈ ℕ ) → ( if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) → if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ sup ( ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) ) ) |
| 115 | 88 114 | syld | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑔 : ℕ ⟶ dom ∫1 ) ∧ 𝑛 ∈ ℕ ) → ( if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) → if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ sup ( ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) ) ) |
| 116 | 115 | adantld | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑔 : ℕ ⟶ dom ∫1 ) ∧ 𝑛 ∈ ℕ ) → ( ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) → if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ sup ( ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) ) ) |
| 117 | 116 | ralimdva | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑔 : ℕ ⟶ dom ∫1 ) → ( ∀ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) → ∀ 𝑛 ∈ ℕ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ sup ( ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) ) ) |
| 118 | 117 | impr | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) → ∀ 𝑛 ∈ ℕ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ sup ( ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) ) |
| 119 | breq2 | ⊢ ( 𝑥 = sup ( ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) → ( if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ 𝑥 ↔ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ sup ( ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) ) ) | |
| 120 | 119 | ralbidv | ⊢ ( 𝑥 = sup ( ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) → ( ∀ 𝑛 ∈ ℕ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ 𝑥 ↔ ∀ 𝑛 ∈ ℕ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ sup ( ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) ) ) |
| 121 | breq2 | ⊢ ( 𝑥 = sup ( ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) → ( ( ∫2 ‘ 𝐹 ) ≤ 𝑥 ↔ ( ∫2 ‘ 𝐹 ) ≤ sup ( ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) ) ) | |
| 122 | 120 121 | imbi12d | ⊢ ( 𝑥 = sup ( ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) → ( ( ∀ 𝑛 ∈ ℕ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ 𝑥 → ( ∫2 ‘ 𝐹 ) ≤ 𝑥 ) ↔ ( ∀ 𝑛 ∈ ℕ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ sup ( ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) → ( ∫2 ‘ 𝐹 ) ≤ sup ( ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) ) ) ) |
| 123 | elxr | ⊢ ( 𝑥 ∈ ℝ* ↔ ( 𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞ ) ) | |
| 124 | simplrl | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 < ( ∫2 ‘ 𝐹 ) ) ) ∧ ( ∫2 ‘ 𝐹 ) = +∞ ) → 𝑥 ∈ ℝ ) | |
| 125 | arch | ⊢ ( 𝑥 ∈ ℝ → ∃ 𝑛 ∈ ℕ 𝑥 < 𝑛 ) | |
| 126 | 124 125 | syl | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 < ( ∫2 ‘ 𝐹 ) ) ) ∧ ( ∫2 ‘ 𝐹 ) = +∞ ) → ∃ 𝑛 ∈ ℕ 𝑥 < 𝑛 ) |
| 127 | 4 | adantl | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 < ( ∫2 ‘ 𝐹 ) ) ) ∧ ( ∫2 ‘ 𝐹 ) = +∞ ) → if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) = 𝑛 ) |
| 128 | 127 | breq2d | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 < ( ∫2 ‘ 𝐹 ) ) ) ∧ ( ∫2 ‘ 𝐹 ) = +∞ ) → ( 𝑥 < if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ↔ 𝑥 < 𝑛 ) ) |
| 129 | 128 | rexbidv | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 < ( ∫2 ‘ 𝐹 ) ) ) ∧ ( ∫2 ‘ 𝐹 ) = +∞ ) → ( ∃ 𝑛 ∈ ℕ 𝑥 < if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ↔ ∃ 𝑛 ∈ ℕ 𝑥 < 𝑛 ) ) |
| 130 | 126 129 | mpbird | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 < ( ∫2 ‘ 𝐹 ) ) ) ∧ ( ∫2 ‘ 𝐹 ) = +∞ ) → ∃ 𝑛 ∈ ℕ 𝑥 < if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ) |
| 131 | 26 | adantlr | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 < ( ∫2 ‘ 𝐹 ) ) ) ∧ ¬ ( ∫2 ‘ 𝐹 ) = +∞ ) → ( ∫2 ‘ 𝐹 ) ∈ ℝ ) |
| 132 | simplrl | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 < ( ∫2 ‘ 𝐹 ) ) ) ∧ ¬ ( ∫2 ‘ 𝐹 ) = +∞ ) → 𝑥 ∈ ℝ ) | |
| 133 | 131 132 | resubcld | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 < ( ∫2 ‘ 𝐹 ) ) ) ∧ ¬ ( ∫2 ‘ 𝐹 ) = +∞ ) → ( ( ∫2 ‘ 𝐹 ) − 𝑥 ) ∈ ℝ ) |
| 134 | simplrr | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 < ( ∫2 ‘ 𝐹 ) ) ) ∧ ¬ ( ∫2 ‘ 𝐹 ) = +∞ ) → 𝑥 < ( ∫2 ‘ 𝐹 ) ) | |
| 135 | 132 131 | posdifd | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 < ( ∫2 ‘ 𝐹 ) ) ) ∧ ¬ ( ∫2 ‘ 𝐹 ) = +∞ ) → ( 𝑥 < ( ∫2 ‘ 𝐹 ) ↔ 0 < ( ( ∫2 ‘ 𝐹 ) − 𝑥 ) ) ) |
| 136 | 134 135 | mpbid | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 < ( ∫2 ‘ 𝐹 ) ) ) ∧ ¬ ( ∫2 ‘ 𝐹 ) = +∞ ) → 0 < ( ( ∫2 ‘ 𝐹 ) − 𝑥 ) ) |
| 137 | nnrecl | ⊢ ( ( ( ( ∫2 ‘ 𝐹 ) − 𝑥 ) ∈ ℝ ∧ 0 < ( ( ∫2 ‘ 𝐹 ) − 𝑥 ) ) → ∃ 𝑛 ∈ ℕ ( 1 / 𝑛 ) < ( ( ∫2 ‘ 𝐹 ) − 𝑥 ) ) | |
| 138 | 133 136 137 | syl2anc | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 < ( ∫2 ‘ 𝐹 ) ) ) ∧ ¬ ( ∫2 ‘ 𝐹 ) = +∞ ) → ∃ 𝑛 ∈ ℕ ( 1 / 𝑛 ) < ( ( ∫2 ‘ 𝐹 ) − 𝑥 ) ) |
| 139 | 34 | adantl | ⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 < ( ∫2 ‘ 𝐹 ) ) ) ∧ ¬ ( ∫2 ‘ 𝐹 ) = +∞ ) ∧ 𝑛 ∈ ℕ ) → ( 1 / 𝑛 ) ∈ ℝ ) |
| 140 | 131 | adantr | ⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 < ( ∫2 ‘ 𝐹 ) ) ) ∧ ¬ ( ∫2 ‘ 𝐹 ) = +∞ ) ∧ 𝑛 ∈ ℕ ) → ( ∫2 ‘ 𝐹 ) ∈ ℝ ) |
| 141 | 132 | adantr | ⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 < ( ∫2 ‘ 𝐹 ) ) ) ∧ ¬ ( ∫2 ‘ 𝐹 ) = +∞ ) ∧ 𝑛 ∈ ℕ ) → 𝑥 ∈ ℝ ) |
| 142 | ltsub13 | ⊢ ( ( ( 1 / 𝑛 ) ∈ ℝ ∧ ( ∫2 ‘ 𝐹 ) ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( ( 1 / 𝑛 ) < ( ( ∫2 ‘ 𝐹 ) − 𝑥 ) ↔ 𝑥 < ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ) | |
| 143 | 139 140 141 142 | syl3anc | ⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 < ( ∫2 ‘ 𝐹 ) ) ) ∧ ¬ ( ∫2 ‘ 𝐹 ) = +∞ ) ∧ 𝑛 ∈ ℕ ) → ( ( 1 / 𝑛 ) < ( ( ∫2 ‘ 𝐹 ) − 𝑥 ) ↔ 𝑥 < ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ) |
| 144 | 8 | ad2antlr | ⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 < ( ∫2 ‘ 𝐹 ) ) ) ∧ ¬ ( ∫2 ‘ 𝐹 ) = +∞ ) ∧ 𝑛 ∈ ℕ ) → if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) = ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) |
| 145 | 144 | breq2d | ⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 < ( ∫2 ‘ 𝐹 ) ) ) ∧ ¬ ( ∫2 ‘ 𝐹 ) = +∞ ) ∧ 𝑛 ∈ ℕ ) → ( 𝑥 < if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ↔ 𝑥 < ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ) |
| 146 | 143 145 | bitr4d | ⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 < ( ∫2 ‘ 𝐹 ) ) ) ∧ ¬ ( ∫2 ‘ 𝐹 ) = +∞ ) ∧ 𝑛 ∈ ℕ ) → ( ( 1 / 𝑛 ) < ( ( ∫2 ‘ 𝐹 ) − 𝑥 ) ↔ 𝑥 < if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ) ) |
| 147 | 146 | rexbidva | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 < ( ∫2 ‘ 𝐹 ) ) ) ∧ ¬ ( ∫2 ‘ 𝐹 ) = +∞ ) → ( ∃ 𝑛 ∈ ℕ ( 1 / 𝑛 ) < ( ( ∫2 ‘ 𝐹 ) − 𝑥 ) ↔ ∃ 𝑛 ∈ ℕ 𝑥 < if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ) ) |
| 148 | 138 147 | mpbid | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 < ( ∫2 ‘ 𝐹 ) ) ) ∧ ¬ ( ∫2 ‘ 𝐹 ) = +∞ ) → ∃ 𝑛 ∈ ℕ 𝑥 < if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ) |
| 149 | 130 148 | pm2.61dan | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 < ( ∫2 ‘ 𝐹 ) ) ) → ∃ 𝑛 ∈ ℕ 𝑥 < if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ) |
| 150 | 149 | expr | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑥 ∈ ℝ ) → ( 𝑥 < ( ∫2 ‘ 𝐹 ) → ∃ 𝑛 ∈ ℕ 𝑥 < if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ) ) |
| 151 | rexr | ⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℝ* ) | |
| 152 | xrltnle | ⊢ ( ( 𝑥 ∈ ℝ* ∧ ( ∫2 ‘ 𝐹 ) ∈ ℝ* ) → ( 𝑥 < ( ∫2 ‘ 𝐹 ) ↔ ¬ ( ∫2 ‘ 𝐹 ) ≤ 𝑥 ) ) | |
| 153 | 151 10 152 | syl2anr | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑥 ∈ ℝ ) → ( 𝑥 < ( ∫2 ‘ 𝐹 ) ↔ ¬ ( ∫2 ‘ 𝐹 ) ≤ 𝑥 ) ) |
| 154 | 151 | ad2antlr | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑛 ∈ ℕ ) → 𝑥 ∈ ℝ* ) |
| 155 | 38 | adantlr | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑛 ∈ ℕ ) → if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ∈ ℝ* ) |
| 156 | xrltnle | ⊢ ( ( 𝑥 ∈ ℝ* ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ∈ ℝ* ) → ( 𝑥 < if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ↔ ¬ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ 𝑥 ) ) | |
| 157 | 154 155 156 | syl2anc | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑛 ∈ ℕ ) → ( 𝑥 < if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ↔ ¬ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ 𝑥 ) ) |
| 158 | 157 | rexbidva | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑥 ∈ ℝ ) → ( ∃ 𝑛 ∈ ℕ 𝑥 < if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ↔ ∃ 𝑛 ∈ ℕ ¬ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ 𝑥 ) ) |
| 159 | rexnal | ⊢ ( ∃ 𝑛 ∈ ℕ ¬ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ 𝑥 ↔ ¬ ∀ 𝑛 ∈ ℕ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ 𝑥 ) | |
| 160 | 158 159 | bitrdi | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑥 ∈ ℝ ) → ( ∃ 𝑛 ∈ ℕ 𝑥 < if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ↔ ¬ ∀ 𝑛 ∈ ℕ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ 𝑥 ) ) |
| 161 | 150 153 160 | 3imtr3d | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑥 ∈ ℝ ) → ( ¬ ( ∫2 ‘ 𝐹 ) ≤ 𝑥 → ¬ ∀ 𝑛 ∈ ℕ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ 𝑥 ) ) |
| 162 | 161 | con4d | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑥 ∈ ℝ ) → ( ∀ 𝑛 ∈ ℕ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ 𝑥 → ( ∫2 ‘ 𝐹 ) ≤ 𝑥 ) ) |
| 163 | 10 | adantr | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑥 = +∞ ) → ( ∫2 ‘ 𝐹 ) ∈ ℝ* ) |
| 164 | pnfge | ⊢ ( ( ∫2 ‘ 𝐹 ) ∈ ℝ* → ( ∫2 ‘ 𝐹 ) ≤ +∞ ) | |
| 165 | 163 164 | syl | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑥 = +∞ ) → ( ∫2 ‘ 𝐹 ) ≤ +∞ ) |
| 166 | simpr | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑥 = +∞ ) → 𝑥 = +∞ ) | |
| 167 | 165 166 | breqtrrd | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑥 = +∞ ) → ( ∫2 ‘ 𝐹 ) ≤ 𝑥 ) |
| 168 | 167 | a1d | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑥 = +∞ ) → ( ∀ 𝑛 ∈ ℕ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ 𝑥 → ( ∫2 ‘ 𝐹 ) ≤ 𝑥 ) ) |
| 169 | 1nn | ⊢ 1 ∈ ℕ | |
| 170 | 169 | ne0ii | ⊢ ℕ ≠ ∅ |
| 171 | r19.2z | ⊢ ( ( ℕ ≠ ∅ ∧ ∀ 𝑛 ∈ ℕ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ 𝑥 ) → ∃ 𝑛 ∈ ℕ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ 𝑥 ) | |
| 172 | 170 171 | mpan | ⊢ ( ∀ 𝑛 ∈ ℕ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ 𝑥 → ∃ 𝑛 ∈ ℕ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ 𝑥 ) |
| 173 | 37 | adantlr | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑥 = -∞ ) ∧ 𝑛 ∈ ℕ ) → if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ∈ ℝ ) |
| 174 | mnflt | ⊢ ( if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ∈ ℝ → -∞ < if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ) | |
| 175 | rexr | ⊢ ( if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ∈ ℝ → if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ∈ ℝ* ) | |
| 176 | xrltnle | ⊢ ( ( -∞ ∈ ℝ* ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ∈ ℝ* ) → ( -∞ < if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ↔ ¬ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ -∞ ) ) | |
| 177 | 15 175 176 | sylancr | ⊢ ( if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ∈ ℝ → ( -∞ < if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ↔ ¬ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ -∞ ) ) |
| 178 | 174 177 | mpbid | ⊢ ( if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ∈ ℝ → ¬ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ -∞ ) |
| 179 | 173 178 | syl | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑥 = -∞ ) ∧ 𝑛 ∈ ℕ ) → ¬ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ -∞ ) |
| 180 | simplr | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑥 = -∞ ) ∧ 𝑛 ∈ ℕ ) → 𝑥 = -∞ ) | |
| 181 | 180 | breq2d | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑥 = -∞ ) ∧ 𝑛 ∈ ℕ ) → ( if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ 𝑥 ↔ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ -∞ ) ) |
| 182 | 179 181 | mtbird | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑥 = -∞ ) ∧ 𝑛 ∈ ℕ ) → ¬ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ 𝑥 ) |
| 183 | 182 | nrexdv | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑥 = -∞ ) → ¬ ∃ 𝑛 ∈ ℕ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ 𝑥 ) |
| 184 | 183 | pm2.21d | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑥 = -∞ ) → ( ∃ 𝑛 ∈ ℕ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ 𝑥 → ( ∫2 ‘ 𝐹 ) ≤ 𝑥 ) ) |
| 185 | 172 184 | syl5 | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑥 = -∞ ) → ( ∀ 𝑛 ∈ ℕ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ 𝑥 → ( ∫2 ‘ 𝐹 ) ≤ 𝑥 ) ) |
| 186 | 162 168 185 | 3jaodan | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞ ) ) → ( ∀ 𝑛 ∈ ℕ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ 𝑥 → ( ∫2 ‘ 𝐹 ) ≤ 𝑥 ) ) |
| 187 | 123 186 | sylan2b | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑥 ∈ ℝ* ) → ( ∀ 𝑛 ∈ ℕ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ 𝑥 → ( ∫2 ‘ 𝐹 ) ≤ 𝑥 ) ) |
| 188 | 187 | ralrimiva | ⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ∀ 𝑥 ∈ ℝ* ( ∀ 𝑛 ∈ ℕ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ 𝑥 → ( ∫2 ‘ 𝐹 ) ≤ 𝑥 ) ) |
| 189 | 188 | adantr | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) → ∀ 𝑥 ∈ ℝ* ( ∀ 𝑛 ∈ ℕ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ 𝑥 → ( ∫2 ‘ 𝐹 ) ≤ 𝑥 ) ) |
| 190 | 109 83 | eqeltrrid | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) → sup ( ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) ∈ ℝ* ) |
| 191 | 122 189 190 | rspcdva | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) → ( ∀ 𝑛 ∈ ℕ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) ≤ sup ( ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) → ( ∫2 ‘ 𝐹 ) ≤ sup ( ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) ) ) |
| 192 | 118 191 | mpd | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) → ( ∫2 ‘ 𝐹 ) ≤ sup ( ran ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) ) |
| 193 | 192 109 | breqtrrdi | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) → ( ∫2 ‘ 𝐹 ) ≤ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) ) |
| 194 | itg2ub | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑔 ‘ 𝑛 ) ∈ dom ∫1 ∧ ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ) → ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ≤ ( ∫2 ‘ 𝐹 ) ) | |
| 195 | 194 | 3expia | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑔 ‘ 𝑛 ) ∈ dom ∫1 ) → ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 → ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ≤ ( ∫2 ‘ 𝐹 ) ) ) |
| 196 | 74 195 | sylan2 | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ 𝑛 ∈ ℕ ) ) → ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 → ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ≤ ( ∫2 ‘ 𝐹 ) ) ) |
| 197 | 196 | anassrs | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑔 : ℕ ⟶ dom ∫1 ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 → ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ≤ ( ∫2 ‘ 𝐹 ) ) ) |
| 198 | 197 | adantrd | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑔 : ℕ ⟶ dom ∫1 ) ∧ 𝑛 ∈ ℕ ) → ( ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) → ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ≤ ( ∫2 ‘ 𝐹 ) ) ) |
| 199 | 198 | ralimdva | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑔 : ℕ ⟶ dom ∫1 ) → ( ∀ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) → ∀ 𝑛 ∈ ℕ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ≤ ( ∫2 ‘ 𝐹 ) ) ) |
| 200 | 199 | impr | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) → ∀ 𝑛 ∈ ℕ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ≤ ( ∫2 ‘ 𝐹 ) ) |
| 201 | eqid | ⊢ ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) | |
| 202 | 89 201 101 | fvmpt | ⊢ ( 𝑚 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ‘ 𝑚 ) = ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) |
| 203 | 202 | breq1d | ⊢ ( 𝑚 ∈ ℕ → ( ( ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ‘ 𝑚 ) ≤ ( ∫2 ‘ 𝐹 ) ↔ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ≤ ( ∫2 ‘ 𝐹 ) ) ) |
| 204 | 203 | ralbiia | ⊢ ( ∀ 𝑚 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ‘ 𝑚 ) ≤ ( ∫2 ‘ 𝐹 ) ↔ ∀ 𝑚 ∈ ℕ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ≤ ( ∫2 ‘ 𝐹 ) ) |
| 205 | 89 | breq1d | ⊢ ( 𝑛 = 𝑚 → ( ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ≤ ( ∫2 ‘ 𝐹 ) ↔ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ≤ ( ∫2 ‘ 𝐹 ) ) ) |
| 206 | 205 | cbvralvw | ⊢ ( ∀ 𝑛 ∈ ℕ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ≤ ( ∫2 ‘ 𝐹 ) ↔ ∀ 𝑚 ∈ ℕ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ≤ ( ∫2 ‘ 𝐹 ) ) |
| 207 | 204 206 | bitr4i | ⊢ ( ∀ 𝑚 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ‘ 𝑚 ) ≤ ( ∫2 ‘ 𝐹 ) ↔ ∀ 𝑛 ∈ ℕ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ≤ ( ∫2 ‘ 𝐹 ) ) |
| 208 | 200 207 | sylibr | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) → ∀ 𝑚 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ‘ 𝑚 ) ≤ ( ∫2 ‘ 𝐹 ) ) |
| 209 | ffn | ⊢ ( ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) : ℕ ⟶ ℝ → ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) Fn ℕ ) | |
| 210 | breq1 | ⊢ ( 𝑧 = ( ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ‘ 𝑚 ) → ( 𝑧 ≤ ( ∫2 ‘ 𝐹 ) ↔ ( ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ‘ 𝑚 ) ≤ ( ∫2 ‘ 𝐹 ) ) ) | |
| 211 | 210 | ralrn | ⊢ ( ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) Fn ℕ → ( ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) 𝑧 ≤ ( ∫2 ‘ 𝐹 ) ↔ ∀ 𝑚 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ‘ 𝑚 ) ≤ ( ∫2 ‘ 𝐹 ) ) ) |
| 212 | 78 209 211 | 3syl | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) → ( ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) 𝑧 ≤ ( ∫2 ‘ 𝐹 ) ↔ ∀ 𝑚 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ‘ 𝑚 ) ≤ ( ∫2 ‘ 𝐹 ) ) ) |
| 213 | 208 212 | mpbird | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) → ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) 𝑧 ≤ ( ∫2 ‘ 𝐹 ) ) |
| 214 | supxrleub | ⊢ ( ( ran ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ⊆ ℝ* ∧ ( ∫2 ‘ 𝐹 ) ∈ ℝ* ) → ( sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) ≤ ( ∫2 ‘ 𝐹 ) ↔ ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) 𝑧 ≤ ( ∫2 ‘ 𝐹 ) ) ) | |
| 215 | 81 73 214 | syl2anc | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) → ( sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) ≤ ( ∫2 ‘ 𝐹 ) ↔ ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) 𝑧 ≤ ( ∫2 ‘ 𝐹 ) ) ) |
| 216 | 213 215 | mpbird | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) → sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) ≤ ( ∫2 ‘ 𝐹 ) ) |
| 217 | 73 83 193 216 | xrletrid | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) → ( ∫2 ‘ 𝐹 ) = sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) ) |
| 218 | 69 72 217 | 3jca | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) → ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ ( ∫2 ‘ 𝐹 ) = sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) ) ) |
| 219 | 218 | ex | ⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ( ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) → ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ ( ∫2 ‘ 𝐹 ) = sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) ) ) ) |
| 220 | 219 | eximdv | ⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ( ∃ 𝑔 ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ if ( ( ∫2 ‘ 𝐹 ) = +∞ , 𝑛 , ( ( ∫2 ‘ 𝐹 ) − ( 1 / 𝑛 ) ) ) < ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) → ∃ 𝑔 ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ ( ∫2 ‘ 𝐹 ) = sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) ) ) ) |
| 221 | 68 220 | mpd | ⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ∃ 𝑔 ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 𝑔 ‘ 𝑛 ) ∘r ≤ 𝐹 ∧ ( ∫2 ‘ 𝐹 ) = sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) ) ) |