This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Approximate version of itg2ub . If F approximately dominates G , then S.1 G <_ S.2 F . (Contributed by Mario Carneiro, 11-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itg2uba.1 | ⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ) | |
| itg2uba.2 | ⊢ ( 𝜑 → 𝐺 ∈ dom ∫1 ) | ||
| itg2uba.3 | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) | ||
| itg2uba.4 | ⊢ ( 𝜑 → ( vol* ‘ 𝐴 ) = 0 ) | ||
| itg2uba.5 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℝ ∖ 𝐴 ) ) → ( 𝐺 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑥 ) ) | ||
| Assertion | itg2uba | ⊢ ( 𝜑 → ( ∫1 ‘ 𝐺 ) ≤ ( ∫2 ‘ 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itg2uba.1 | ⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ) | |
| 2 | itg2uba.2 | ⊢ ( 𝜑 → 𝐺 ∈ dom ∫1 ) | |
| 3 | itg2uba.3 | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) | |
| 4 | itg2uba.4 | ⊢ ( 𝜑 → ( vol* ‘ 𝐴 ) = 0 ) | |
| 5 | itg2uba.5 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℝ ∖ 𝐴 ) ) → ( 𝐺 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑥 ) ) | |
| 6 | itg1cl | ⊢ ( 𝐺 ∈ dom ∫1 → ( ∫1 ‘ 𝐺 ) ∈ ℝ ) | |
| 7 | 2 6 | syl | ⊢ ( 𝜑 → ( ∫1 ‘ 𝐺 ) ∈ ℝ ) |
| 8 | 7 | rexrd | ⊢ ( 𝜑 → ( ∫1 ‘ 𝐺 ) ∈ ℝ* ) |
| 9 | nulmbl | ⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) = 0 ) → 𝐴 ∈ dom vol ) | |
| 10 | 3 4 9 | syl2anc | ⊢ ( 𝜑 → 𝐴 ∈ dom vol ) |
| 11 | cmmbl | ⊢ ( 𝐴 ∈ dom vol → ( ℝ ∖ 𝐴 ) ∈ dom vol ) | |
| 12 | 10 11 | syl | ⊢ ( 𝜑 → ( ℝ ∖ 𝐴 ) ∈ dom vol ) |
| 13 | ifnot | ⊢ if ( ¬ 𝑥 ∈ 𝐴 , ( 𝐺 ‘ 𝑥 ) , 0 ) = if ( 𝑥 ∈ 𝐴 , 0 , ( 𝐺 ‘ 𝑥 ) ) | |
| 14 | eldif | ⊢ ( 𝑥 ∈ ( ℝ ∖ 𝐴 ) ↔ ( 𝑥 ∈ ℝ ∧ ¬ 𝑥 ∈ 𝐴 ) ) | |
| 15 | 14 | baibr | ⊢ ( 𝑥 ∈ ℝ → ( ¬ 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ ( ℝ ∖ 𝐴 ) ) ) |
| 16 | 15 | ifbid | ⊢ ( 𝑥 ∈ ℝ → if ( ¬ 𝑥 ∈ 𝐴 , ( 𝐺 ‘ 𝑥 ) , 0 ) = if ( 𝑥 ∈ ( ℝ ∖ 𝐴 ) , ( 𝐺 ‘ 𝑥 ) , 0 ) ) |
| 17 | 13 16 | eqtr3id | ⊢ ( 𝑥 ∈ ℝ → if ( 𝑥 ∈ 𝐴 , 0 , ( 𝐺 ‘ 𝑥 ) ) = if ( 𝑥 ∈ ( ℝ ∖ 𝐴 ) , ( 𝐺 ‘ 𝑥 ) , 0 ) ) |
| 18 | 17 | mpteq2ia | ⊢ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 0 , ( 𝐺 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ℝ ∖ 𝐴 ) , ( 𝐺 ‘ 𝑥 ) , 0 ) ) |
| 19 | 18 | i1fres | ⊢ ( ( 𝐺 ∈ dom ∫1 ∧ ( ℝ ∖ 𝐴 ) ∈ dom vol ) → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 0 , ( 𝐺 ‘ 𝑥 ) ) ) ∈ dom ∫1 ) |
| 20 | 2 12 19 | syl2anc | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 0 , ( 𝐺 ‘ 𝑥 ) ) ) ∈ dom ∫1 ) |
| 21 | itg1cl | ⊢ ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 0 , ( 𝐺 ‘ 𝑥 ) ) ) ∈ dom ∫1 → ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 0 , ( 𝐺 ‘ 𝑥 ) ) ) ) ∈ ℝ ) | |
| 22 | 20 21 | syl | ⊢ ( 𝜑 → ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 0 , ( 𝐺 ‘ 𝑥 ) ) ) ) ∈ ℝ ) |
| 23 | 22 | rexrd | ⊢ ( 𝜑 → ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 0 , ( 𝐺 ‘ 𝑥 ) ) ) ) ∈ ℝ* ) |
| 24 | itg2cl | ⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ( ∫2 ‘ 𝐹 ) ∈ ℝ* ) | |
| 25 | 1 24 | syl | ⊢ ( 𝜑 → ( ∫2 ‘ 𝐹 ) ∈ ℝ* ) |
| 26 | i1ff | ⊢ ( 𝐺 ∈ dom ∫1 → 𝐺 : ℝ ⟶ ℝ ) | |
| 27 | 2 26 | syl | ⊢ ( 𝜑 → 𝐺 : ℝ ⟶ ℝ ) |
| 28 | eldifi | ⊢ ( 𝑦 ∈ ( ℝ ∖ 𝐴 ) → 𝑦 ∈ ℝ ) | |
| 29 | ffvelcdm | ⊢ ( ( 𝐺 : ℝ ⟶ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝐺 ‘ 𝑦 ) ∈ ℝ ) | |
| 30 | 27 28 29 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ℝ ∖ 𝐴 ) ) → ( 𝐺 ‘ 𝑦 ) ∈ ℝ ) |
| 31 | 30 | leidd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ℝ ∖ 𝐴 ) ) → ( 𝐺 ‘ 𝑦 ) ≤ ( 𝐺 ‘ 𝑦 ) ) |
| 32 | eldif | ⊢ ( 𝑦 ∈ ( ℝ ∖ 𝐴 ) ↔ ( 𝑦 ∈ ℝ ∧ ¬ 𝑦 ∈ 𝐴 ) ) | |
| 33 | eleq1w | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) | |
| 34 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) | |
| 35 | 33 34 | ifbieq2d | ⊢ ( 𝑥 = 𝑦 → if ( 𝑥 ∈ 𝐴 , 0 , ( 𝐺 ‘ 𝑥 ) ) = if ( 𝑦 ∈ 𝐴 , 0 , ( 𝐺 ‘ 𝑦 ) ) ) |
| 36 | eqid | ⊢ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 0 , ( 𝐺 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 0 , ( 𝐺 ‘ 𝑥 ) ) ) | |
| 37 | c0ex | ⊢ 0 ∈ V | |
| 38 | fvex | ⊢ ( 𝐺 ‘ 𝑦 ) ∈ V | |
| 39 | 37 38 | ifex | ⊢ if ( 𝑦 ∈ 𝐴 , 0 , ( 𝐺 ‘ 𝑦 ) ) ∈ V |
| 40 | 35 36 39 | fvmpt | ⊢ ( 𝑦 ∈ ℝ → ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 0 , ( 𝐺 ‘ 𝑥 ) ) ) ‘ 𝑦 ) = if ( 𝑦 ∈ 𝐴 , 0 , ( 𝐺 ‘ 𝑦 ) ) ) |
| 41 | iffalse | ⊢ ( ¬ 𝑦 ∈ 𝐴 → if ( 𝑦 ∈ 𝐴 , 0 , ( 𝐺 ‘ 𝑦 ) ) = ( 𝐺 ‘ 𝑦 ) ) | |
| 42 | 40 41 | sylan9eq | ⊢ ( ( 𝑦 ∈ ℝ ∧ ¬ 𝑦 ∈ 𝐴 ) → ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 0 , ( 𝐺 ‘ 𝑥 ) ) ) ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) |
| 43 | 32 42 | sylbi | ⊢ ( 𝑦 ∈ ( ℝ ∖ 𝐴 ) → ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 0 , ( 𝐺 ‘ 𝑥 ) ) ) ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) |
| 44 | 43 | adantl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ℝ ∖ 𝐴 ) ) → ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 0 , ( 𝐺 ‘ 𝑥 ) ) ) ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) |
| 45 | 31 44 | breqtrrd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ℝ ∖ 𝐴 ) ) → ( 𝐺 ‘ 𝑦 ) ≤ ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 0 , ( 𝐺 ‘ 𝑥 ) ) ) ‘ 𝑦 ) ) |
| 46 | 2 3 4 20 45 | itg1lea | ⊢ ( 𝜑 → ( ∫1 ‘ 𝐺 ) ≤ ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 0 , ( 𝐺 ‘ 𝑥 ) ) ) ) ) |
| 47 | iftrue | ⊢ ( 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , 0 , ( 𝐺 ‘ 𝑥 ) ) = 0 ) | |
| 48 | 47 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝐴 , 0 , ( 𝐺 ‘ 𝑥 ) ) = 0 ) |
| 49 | 1 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,] +∞ ) ) |
| 50 | elxrge0 | ⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,] +∞ ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ* ∧ 0 ≤ ( 𝐹 ‘ 𝑥 ) ) ) | |
| 51 | 49 50 | sylib | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ* ∧ 0 ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 52 | 51 | simprd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 0 ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 53 | 52 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 54 | 48 53 | eqbrtrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝐴 , 0 , ( 𝐺 ‘ 𝑥 ) ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 55 | iffalse | ⊢ ( ¬ 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , 0 , ( 𝐺 ‘ 𝑥 ) ) = ( 𝐺 ‘ 𝑥 ) ) | |
| 56 | 55 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ¬ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝐴 , 0 , ( 𝐺 ‘ 𝑥 ) ) = ( 𝐺 ‘ 𝑥 ) ) |
| 57 | 14 5 | sylan2br | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ¬ 𝑥 ∈ 𝐴 ) ) → ( 𝐺 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 58 | 57 | anassrs | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ¬ 𝑥 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 59 | 56 58 | eqbrtrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ¬ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝐴 , 0 , ( 𝐺 ‘ 𝑥 ) ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 60 | 54 59 | pm2.61dan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ 𝐴 , 0 , ( 𝐺 ‘ 𝑥 ) ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 61 | 60 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ if ( 𝑥 ∈ 𝐴 , 0 , ( 𝐺 ‘ 𝑥 ) ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 62 | reex | ⊢ ℝ ∈ V | |
| 63 | 62 | a1i | ⊢ ( 𝜑 → ℝ ∈ V ) |
| 64 | fvex | ⊢ ( 𝐺 ‘ 𝑥 ) ∈ V | |
| 65 | 37 64 | ifex | ⊢ if ( 𝑥 ∈ 𝐴 , 0 , ( 𝐺 ‘ 𝑥 ) ) ∈ V |
| 66 | 65 | a1i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ 𝐴 , 0 , ( 𝐺 ‘ 𝑥 ) ) ∈ V ) |
| 67 | fvexd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ V ) | |
| 68 | eqidd | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 0 , ( 𝐺 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 0 , ( 𝐺 ‘ 𝑥 ) ) ) ) | |
| 69 | 1 | feqmptd | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ ℝ ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 70 | 63 66 67 68 69 | ofrfval2 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 0 , ( 𝐺 ‘ 𝑥 ) ) ) ∘r ≤ 𝐹 ↔ ∀ 𝑥 ∈ ℝ if ( 𝑥 ∈ 𝐴 , 0 , ( 𝐺 ‘ 𝑥 ) ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 71 | 61 70 | mpbird | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 0 , ( 𝐺 ‘ 𝑥 ) ) ) ∘r ≤ 𝐹 ) |
| 72 | itg2ub | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 0 , ( 𝐺 ‘ 𝑥 ) ) ) ∈ dom ∫1 ∧ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 0 , ( 𝐺 ‘ 𝑥 ) ) ) ∘r ≤ 𝐹 ) → ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 0 , ( 𝐺 ‘ 𝑥 ) ) ) ) ≤ ( ∫2 ‘ 𝐹 ) ) | |
| 73 | 1 20 71 72 | syl3anc | ⊢ ( 𝜑 → ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 0 , ( 𝐺 ‘ 𝑥 ) ) ) ) ≤ ( ∫2 ‘ 𝐹 ) ) |
| 74 | 8 23 25 46 73 | xrletrd | ⊢ ( 𝜑 → ( ∫1 ‘ 𝐺 ) ≤ ( ∫2 ‘ 𝐹 ) ) |