This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Definitional property of the S.2 integral: for any function F there is a countable sequence g of simple functions less than F whose integrals converge to the integral of F . (This theorem is for the most part unnecessary in lieu of itg2i1fseq , but unlike that theorem this one doesn't require F to be measurable.) (Contributed by Mario Carneiro, 14-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | itg2seq | |- ( F : RR --> ( 0 [,] +oo ) -> E. g ( g : NN --> dom S.1 /\ A. n e. NN ( g ` n ) oR <_ F /\ ( S.2 ` F ) = sup ( ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) , RR* , < ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnre | |- ( n e. NN -> n e. RR ) |
|
| 2 | 1 | ad2antlr | |- ( ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) /\ ( S.2 ` F ) = +oo ) -> n e. RR ) |
| 3 | 2 | ltpnfd | |- ( ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) /\ ( S.2 ` F ) = +oo ) -> n < +oo ) |
| 4 | iftrue | |- ( ( S.2 ` F ) = +oo -> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) = n ) |
|
| 5 | 4 | adantl | |- ( ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) /\ ( S.2 ` F ) = +oo ) -> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) = n ) |
| 6 | simpr | |- ( ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) /\ ( S.2 ` F ) = +oo ) -> ( S.2 ` F ) = +oo ) |
|
| 7 | 3 5 6 | 3brtr4d | |- ( ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) /\ ( S.2 ` F ) = +oo ) -> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.2 ` F ) ) |
| 8 | iffalse | |- ( -. ( S.2 ` F ) = +oo -> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) = ( ( S.2 ` F ) - ( 1 / n ) ) ) |
|
| 9 | 8 | adantl | |- ( ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) /\ -. ( S.2 ` F ) = +oo ) -> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) = ( ( S.2 ` F ) - ( 1 / n ) ) ) |
| 10 | itg2cl | |- ( F : RR --> ( 0 [,] +oo ) -> ( S.2 ` F ) e. RR* ) |
|
| 11 | xrrebnd | |- ( ( S.2 ` F ) e. RR* -> ( ( S.2 ` F ) e. RR <-> ( -oo < ( S.2 ` F ) /\ ( S.2 ` F ) < +oo ) ) ) |
|
| 12 | 10 11 | syl | |- ( F : RR --> ( 0 [,] +oo ) -> ( ( S.2 ` F ) e. RR <-> ( -oo < ( S.2 ` F ) /\ ( S.2 ` F ) < +oo ) ) ) |
| 13 | itg2ge0 | |- ( F : RR --> ( 0 [,] +oo ) -> 0 <_ ( S.2 ` F ) ) |
|
| 14 | mnflt0 | |- -oo < 0 |
|
| 15 | mnfxr | |- -oo e. RR* |
|
| 16 | 0xr | |- 0 e. RR* |
|
| 17 | xrltletr | |- ( ( -oo e. RR* /\ 0 e. RR* /\ ( S.2 ` F ) e. RR* ) -> ( ( -oo < 0 /\ 0 <_ ( S.2 ` F ) ) -> -oo < ( S.2 ` F ) ) ) |
|
| 18 | 15 16 10 17 | mp3an12i | |- ( F : RR --> ( 0 [,] +oo ) -> ( ( -oo < 0 /\ 0 <_ ( S.2 ` F ) ) -> -oo < ( S.2 ` F ) ) ) |
| 19 | 14 18 | mpani | |- ( F : RR --> ( 0 [,] +oo ) -> ( 0 <_ ( S.2 ` F ) -> -oo < ( S.2 ` F ) ) ) |
| 20 | 13 19 | mpd | |- ( F : RR --> ( 0 [,] +oo ) -> -oo < ( S.2 ` F ) ) |
| 21 | 20 | biantrurd | |- ( F : RR --> ( 0 [,] +oo ) -> ( ( S.2 ` F ) < +oo <-> ( -oo < ( S.2 ` F ) /\ ( S.2 ` F ) < +oo ) ) ) |
| 22 | nltpnft | |- ( ( S.2 ` F ) e. RR* -> ( ( S.2 ` F ) = +oo <-> -. ( S.2 ` F ) < +oo ) ) |
|
| 23 | 10 22 | syl | |- ( F : RR --> ( 0 [,] +oo ) -> ( ( S.2 ` F ) = +oo <-> -. ( S.2 ` F ) < +oo ) ) |
| 24 | 23 | con2bid | |- ( F : RR --> ( 0 [,] +oo ) -> ( ( S.2 ` F ) < +oo <-> -. ( S.2 ` F ) = +oo ) ) |
| 25 | 12 21 24 | 3bitr2rd | |- ( F : RR --> ( 0 [,] +oo ) -> ( -. ( S.2 ` F ) = +oo <-> ( S.2 ` F ) e. RR ) ) |
| 26 | 25 | biimpa | |- ( ( F : RR --> ( 0 [,] +oo ) /\ -. ( S.2 ` F ) = +oo ) -> ( S.2 ` F ) e. RR ) |
| 27 | 26 | adantlr | |- ( ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) /\ -. ( S.2 ` F ) = +oo ) -> ( S.2 ` F ) e. RR ) |
| 28 | nnrp | |- ( n e. NN -> n e. RR+ ) |
|
| 29 | 28 | rpreccld | |- ( n e. NN -> ( 1 / n ) e. RR+ ) |
| 30 | 29 | ad2antlr | |- ( ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) /\ -. ( S.2 ` F ) = +oo ) -> ( 1 / n ) e. RR+ ) |
| 31 | 27 30 | ltsubrpd | |- ( ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) /\ -. ( S.2 ` F ) = +oo ) -> ( ( S.2 ` F ) - ( 1 / n ) ) < ( S.2 ` F ) ) |
| 32 | 9 31 | eqbrtrd | |- ( ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) /\ -. ( S.2 ` F ) = +oo ) -> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.2 ` F ) ) |
| 33 | 7 32 | pm2.61dan | |- ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) -> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.2 ` F ) ) |
| 34 | nnrecre | |- ( n e. NN -> ( 1 / n ) e. RR ) |
|
| 35 | 34 | ad2antlr | |- ( ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) /\ -. ( S.2 ` F ) = +oo ) -> ( 1 / n ) e. RR ) |
| 36 | 27 35 | resubcld | |- ( ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) /\ -. ( S.2 ` F ) = +oo ) -> ( ( S.2 ` F ) - ( 1 / n ) ) e. RR ) |
| 37 | 2 36 | ifclda | |- ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) -> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) e. RR ) |
| 38 | 37 | rexrd | |- ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) -> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) e. RR* ) |
| 39 | 10 | adantr | |- ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) -> ( S.2 ` F ) e. RR* ) |
| 40 | xrltnle | |- ( ( if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) e. RR* /\ ( S.2 ` F ) e. RR* ) -> ( if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.2 ` F ) <-> -. ( S.2 ` F ) <_ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) ) ) |
|
| 41 | 38 39 40 | syl2anc | |- ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) -> ( if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.2 ` F ) <-> -. ( S.2 ` F ) <_ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) ) ) |
| 42 | 33 41 | mpbid | |- ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) -> -. ( S.2 ` F ) <_ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) ) |
| 43 | itg2leub | |- ( ( F : RR --> ( 0 [,] +oo ) /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) e. RR* ) -> ( ( S.2 ` F ) <_ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <-> A. f e. dom S.1 ( f oR <_ F -> ( S.1 ` f ) <_ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) ) ) ) |
|
| 44 | 38 43 | syldan | |- ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) -> ( ( S.2 ` F ) <_ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <-> A. f e. dom S.1 ( f oR <_ F -> ( S.1 ` f ) <_ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) ) ) ) |
| 45 | 42 44 | mtbid | |- ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) -> -. A. f e. dom S.1 ( f oR <_ F -> ( S.1 ` f ) <_ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) ) ) |
| 46 | rexanali | |- ( E. f e. dom S.1 ( f oR <_ F /\ -. ( S.1 ` f ) <_ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) ) <-> -. A. f e. dom S.1 ( f oR <_ F -> ( S.1 ` f ) <_ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) ) ) |
|
| 47 | 45 46 | sylibr | |- ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) -> E. f e. dom S.1 ( f oR <_ F /\ -. ( S.1 ` f ) <_ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) ) ) |
| 48 | itg1cl | |- ( f e. dom S.1 -> ( S.1 ` f ) e. RR ) |
|
| 49 | ltnle | |- ( ( if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) e. RR /\ ( S.1 ` f ) e. RR ) -> ( if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` f ) <-> -. ( S.1 ` f ) <_ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) ) ) |
|
| 50 | 37 48 49 | syl2an | |- ( ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) /\ f e. dom S.1 ) -> ( if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` f ) <-> -. ( S.1 ` f ) <_ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) ) ) |
| 51 | 50 | anbi2d | |- ( ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) /\ f e. dom S.1 ) -> ( ( f oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` f ) ) <-> ( f oR <_ F /\ -. ( S.1 ` f ) <_ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) ) ) ) |
| 52 | 51 | rexbidva | |- ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) -> ( E. f e. dom S.1 ( f oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` f ) ) <-> E. f e. dom S.1 ( f oR <_ F /\ -. ( S.1 ` f ) <_ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) ) ) ) |
| 53 | 47 52 | mpbird | |- ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) -> E. f e. dom S.1 ( f oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` f ) ) ) |
| 54 | 53 | ralrimiva | |- ( F : RR --> ( 0 [,] +oo ) -> A. n e. NN E. f e. dom S.1 ( f oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` f ) ) ) |
| 55 | ovex | |- ( RR ^m RR ) e. _V |
|
| 56 | i1ff | |- ( x e. dom S.1 -> x : RR --> RR ) |
|
| 57 | reex | |- RR e. _V |
|
| 58 | 57 57 | elmap | |- ( x e. ( RR ^m RR ) <-> x : RR --> RR ) |
| 59 | 56 58 | sylibr | |- ( x e. dom S.1 -> x e. ( RR ^m RR ) ) |
| 60 | 59 | ssriv | |- dom S.1 C_ ( RR ^m RR ) |
| 61 | 55 60 | ssexi | |- dom S.1 e. _V |
| 62 | nnenom | |- NN ~~ _om |
|
| 63 | breq1 | |- ( f = ( g ` n ) -> ( f oR <_ F <-> ( g ` n ) oR <_ F ) ) |
|
| 64 | fveq2 | |- ( f = ( g ` n ) -> ( S.1 ` f ) = ( S.1 ` ( g ` n ) ) ) |
|
| 65 | 64 | breq2d | |- ( f = ( g ` n ) -> ( if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` f ) <-> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) |
| 66 | 63 65 | anbi12d | |- ( f = ( g ` n ) -> ( ( f oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` f ) ) <-> ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) |
| 67 | 61 62 66 | axcc4 | |- ( A. n e. NN E. f e. dom S.1 ( f oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` f ) ) -> E. g ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) |
| 68 | 54 67 | syl | |- ( F : RR --> ( 0 [,] +oo ) -> E. g ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) |
| 69 | simprl | |- ( ( F : RR --> ( 0 [,] +oo ) /\ ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) -> g : NN --> dom S.1 ) |
|
| 70 | simpl | |- ( ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) -> ( g ` n ) oR <_ F ) |
|
| 71 | 70 | ralimi | |- ( A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) -> A. n e. NN ( g ` n ) oR <_ F ) |
| 72 | 71 | ad2antll | |- ( ( F : RR --> ( 0 [,] +oo ) /\ ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) -> A. n e. NN ( g ` n ) oR <_ F ) |
| 73 | 10 | adantr | |- ( ( F : RR --> ( 0 [,] +oo ) /\ ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) -> ( S.2 ` F ) e. RR* ) |
| 74 | ffvelcdm | |- ( ( g : NN --> dom S.1 /\ n e. NN ) -> ( g ` n ) e. dom S.1 ) |
|
| 75 | itg1cl | |- ( ( g ` n ) e. dom S.1 -> ( S.1 ` ( g ` n ) ) e. RR ) |
|
| 76 | 74 75 | syl | |- ( ( g : NN --> dom S.1 /\ n e. NN ) -> ( S.1 ` ( g ` n ) ) e. RR ) |
| 77 | 76 | fmpttd | |- ( g : NN --> dom S.1 -> ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) : NN --> RR ) |
| 78 | 77 | ad2antrl | |- ( ( F : RR --> ( 0 [,] +oo ) /\ ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) -> ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) : NN --> RR ) |
| 79 | 78 | frnd | |- ( ( F : RR --> ( 0 [,] +oo ) /\ ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) -> ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) C_ RR ) |
| 80 | ressxr | |- RR C_ RR* |
|
| 81 | 79 80 | sstrdi | |- ( ( F : RR --> ( 0 [,] +oo ) /\ ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) -> ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) C_ RR* ) |
| 82 | supxrcl | |- ( ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) C_ RR* -> sup ( ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) , RR* , < ) e. RR* ) |
|
| 83 | 81 82 | syl | |- ( ( F : RR --> ( 0 [,] +oo ) /\ ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) -> sup ( ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) , RR* , < ) e. RR* ) |
| 84 | 38 | adantlr | |- ( ( ( F : RR --> ( 0 [,] +oo ) /\ g : NN --> dom S.1 ) /\ n e. NN ) -> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) e. RR* ) |
| 85 | 76 | adantll | |- ( ( ( F : RR --> ( 0 [,] +oo ) /\ g : NN --> dom S.1 ) /\ n e. NN ) -> ( S.1 ` ( g ` n ) ) e. RR ) |
| 86 | 85 | rexrd | |- ( ( ( F : RR --> ( 0 [,] +oo ) /\ g : NN --> dom S.1 ) /\ n e. NN ) -> ( S.1 ` ( g ` n ) ) e. RR* ) |
| 87 | xrltle | |- ( ( if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) e. RR* /\ ( S.1 ` ( g ` n ) ) e. RR* ) -> ( if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) -> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ ( S.1 ` ( g ` n ) ) ) ) |
|
| 88 | 84 86 87 | syl2anc | |- ( ( ( F : RR --> ( 0 [,] +oo ) /\ g : NN --> dom S.1 ) /\ n e. NN ) -> ( if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) -> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ ( S.1 ` ( g ` n ) ) ) ) |
| 89 | 2fveq3 | |- ( n = m -> ( S.1 ` ( g ` n ) ) = ( S.1 ` ( g ` m ) ) ) |
|
| 90 | 89 | cbvmptv | |- ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) = ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) |
| 91 | 90 | rneqi | |- ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) = ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) |
| 92 | 77 | adantl | |- ( ( F : RR --> ( 0 [,] +oo ) /\ g : NN --> dom S.1 ) -> ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) : NN --> RR ) |
| 93 | 92 | frnd | |- ( ( F : RR --> ( 0 [,] +oo ) /\ g : NN --> dom S.1 ) -> ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) C_ RR ) |
| 94 | 93 80 | sstrdi | |- ( ( F : RR --> ( 0 [,] +oo ) /\ g : NN --> dom S.1 ) -> ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) C_ RR* ) |
| 95 | 94 | adantr | |- ( ( ( F : RR --> ( 0 [,] +oo ) /\ g : NN --> dom S.1 ) /\ n e. NN ) -> ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) C_ RR* ) |
| 96 | 91 95 | eqsstrrid | |- ( ( ( F : RR --> ( 0 [,] +oo ) /\ g : NN --> dom S.1 ) /\ n e. NN ) -> ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) C_ RR* ) |
| 97 | 2fveq3 | |- ( m = n -> ( S.1 ` ( g ` m ) ) = ( S.1 ` ( g ` n ) ) ) |
|
| 98 | eqid | |- ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) = ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) |
|
| 99 | fvex | |- ( S.1 ` ( g ` n ) ) e. _V |
|
| 100 | 97 98 99 | fvmpt | |- ( n e. NN -> ( ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) ` n ) = ( S.1 ` ( g ` n ) ) ) |
| 101 | fvex | |- ( S.1 ` ( g ` m ) ) e. _V |
|
| 102 | 101 98 | fnmpti | |- ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) Fn NN |
| 103 | fnfvelrn | |- ( ( ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) Fn NN /\ n e. NN ) -> ( ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) ` n ) e. ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) ) |
|
| 104 | 102 103 | mpan | |- ( n e. NN -> ( ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) ` n ) e. ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) ) |
| 105 | 100 104 | eqeltrrd | |- ( n e. NN -> ( S.1 ` ( g ` n ) ) e. ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) ) |
| 106 | 105 | adantl | |- ( ( ( F : RR --> ( 0 [,] +oo ) /\ g : NN --> dom S.1 ) /\ n e. NN ) -> ( S.1 ` ( g ` n ) ) e. ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) ) |
| 107 | supxrub | |- ( ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) C_ RR* /\ ( S.1 ` ( g ` n ) ) e. ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) ) -> ( S.1 ` ( g ` n ) ) <_ sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) ) |
|
| 108 | 96 106 107 | syl2anc | |- ( ( ( F : RR --> ( 0 [,] +oo ) /\ g : NN --> dom S.1 ) /\ n e. NN ) -> ( S.1 ` ( g ` n ) ) <_ sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) ) |
| 109 | 91 | supeq1i | |- sup ( ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) , RR* , < ) = sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) |
| 110 | 95 82 | syl | |- ( ( ( F : RR --> ( 0 [,] +oo ) /\ g : NN --> dom S.1 ) /\ n e. NN ) -> sup ( ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) , RR* , < ) e. RR* ) |
| 111 | 109 110 | eqeltrrid | |- ( ( ( F : RR --> ( 0 [,] +oo ) /\ g : NN --> dom S.1 ) /\ n e. NN ) -> sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) e. RR* ) |
| 112 | xrletr | |- ( ( if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) e. RR* /\ ( S.1 ` ( g ` n ) ) e. RR* /\ sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) e. RR* ) -> ( ( if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ ( S.1 ` ( g ` n ) ) /\ ( S.1 ` ( g ` n ) ) <_ sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) ) -> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) ) ) |
|
| 113 | 84 86 111 112 | syl3anc | |- ( ( ( F : RR --> ( 0 [,] +oo ) /\ g : NN --> dom S.1 ) /\ n e. NN ) -> ( ( if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ ( S.1 ` ( g ` n ) ) /\ ( S.1 ` ( g ` n ) ) <_ sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) ) -> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) ) ) |
| 114 | 108 113 | mpan2d | |- ( ( ( F : RR --> ( 0 [,] +oo ) /\ g : NN --> dom S.1 ) /\ n e. NN ) -> ( if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ ( S.1 ` ( g ` n ) ) -> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) ) ) |
| 115 | 88 114 | syld | |- ( ( ( F : RR --> ( 0 [,] +oo ) /\ g : NN --> dom S.1 ) /\ n e. NN ) -> ( if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) -> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) ) ) |
| 116 | 115 | adantld | |- ( ( ( F : RR --> ( 0 [,] +oo ) /\ g : NN --> dom S.1 ) /\ n e. NN ) -> ( ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) -> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) ) ) |
| 117 | 116 | ralimdva | |- ( ( F : RR --> ( 0 [,] +oo ) /\ g : NN --> dom S.1 ) -> ( A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) -> A. n e. NN if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) ) ) |
| 118 | 117 | impr | |- ( ( F : RR --> ( 0 [,] +oo ) /\ ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) -> A. n e. NN if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) ) |
| 119 | breq2 | |- ( x = sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) -> ( if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x <-> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) ) ) |
|
| 120 | 119 | ralbidv | |- ( x = sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) -> ( A. n e. NN if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x <-> A. n e. NN if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) ) ) |
| 121 | breq2 | |- ( x = sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) -> ( ( S.2 ` F ) <_ x <-> ( S.2 ` F ) <_ sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) ) ) |
|
| 122 | 120 121 | imbi12d | |- ( x = sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) -> ( ( A. n e. NN if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x -> ( S.2 ` F ) <_ x ) <-> ( A. n e. NN if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) -> ( S.2 ` F ) <_ sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) ) ) ) |
| 123 | elxr | |- ( x e. RR* <-> ( x e. RR \/ x = +oo \/ x = -oo ) ) |
|
| 124 | simplrl | |- ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR /\ x < ( S.2 ` F ) ) ) /\ ( S.2 ` F ) = +oo ) -> x e. RR ) |
|
| 125 | arch | |- ( x e. RR -> E. n e. NN x < n ) |
|
| 126 | 124 125 | syl | |- ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR /\ x < ( S.2 ` F ) ) ) /\ ( S.2 ` F ) = +oo ) -> E. n e. NN x < n ) |
| 127 | 4 | adantl | |- ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR /\ x < ( S.2 ` F ) ) ) /\ ( S.2 ` F ) = +oo ) -> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) = n ) |
| 128 | 127 | breq2d | |- ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR /\ x < ( S.2 ` F ) ) ) /\ ( S.2 ` F ) = +oo ) -> ( x < if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <-> x < n ) ) |
| 129 | 128 | rexbidv | |- ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR /\ x < ( S.2 ` F ) ) ) /\ ( S.2 ` F ) = +oo ) -> ( E. n e. NN x < if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <-> E. n e. NN x < n ) ) |
| 130 | 126 129 | mpbird | |- ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR /\ x < ( S.2 ` F ) ) ) /\ ( S.2 ` F ) = +oo ) -> E. n e. NN x < if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) ) |
| 131 | 26 | adantlr | |- ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR /\ x < ( S.2 ` F ) ) ) /\ -. ( S.2 ` F ) = +oo ) -> ( S.2 ` F ) e. RR ) |
| 132 | simplrl | |- ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR /\ x < ( S.2 ` F ) ) ) /\ -. ( S.2 ` F ) = +oo ) -> x e. RR ) |
|
| 133 | 131 132 | resubcld | |- ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR /\ x < ( S.2 ` F ) ) ) /\ -. ( S.2 ` F ) = +oo ) -> ( ( S.2 ` F ) - x ) e. RR ) |
| 134 | simplrr | |- ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR /\ x < ( S.2 ` F ) ) ) /\ -. ( S.2 ` F ) = +oo ) -> x < ( S.2 ` F ) ) |
|
| 135 | 132 131 | posdifd | |- ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR /\ x < ( S.2 ` F ) ) ) /\ -. ( S.2 ` F ) = +oo ) -> ( x < ( S.2 ` F ) <-> 0 < ( ( S.2 ` F ) - x ) ) ) |
| 136 | 134 135 | mpbid | |- ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR /\ x < ( S.2 ` F ) ) ) /\ -. ( S.2 ` F ) = +oo ) -> 0 < ( ( S.2 ` F ) - x ) ) |
| 137 | nnrecl | |- ( ( ( ( S.2 ` F ) - x ) e. RR /\ 0 < ( ( S.2 ` F ) - x ) ) -> E. n e. NN ( 1 / n ) < ( ( S.2 ` F ) - x ) ) |
|
| 138 | 133 136 137 | syl2anc | |- ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR /\ x < ( S.2 ` F ) ) ) /\ -. ( S.2 ` F ) = +oo ) -> E. n e. NN ( 1 / n ) < ( ( S.2 ` F ) - x ) ) |
| 139 | 34 | adantl | |- ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR /\ x < ( S.2 ` F ) ) ) /\ -. ( S.2 ` F ) = +oo ) /\ n e. NN ) -> ( 1 / n ) e. RR ) |
| 140 | 131 | adantr | |- ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR /\ x < ( S.2 ` F ) ) ) /\ -. ( S.2 ` F ) = +oo ) /\ n e. NN ) -> ( S.2 ` F ) e. RR ) |
| 141 | 132 | adantr | |- ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR /\ x < ( S.2 ` F ) ) ) /\ -. ( S.2 ` F ) = +oo ) /\ n e. NN ) -> x e. RR ) |
| 142 | ltsub13 | |- ( ( ( 1 / n ) e. RR /\ ( S.2 ` F ) e. RR /\ x e. RR ) -> ( ( 1 / n ) < ( ( S.2 ` F ) - x ) <-> x < ( ( S.2 ` F ) - ( 1 / n ) ) ) ) |
|
| 143 | 139 140 141 142 | syl3anc | |- ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR /\ x < ( S.2 ` F ) ) ) /\ -. ( S.2 ` F ) = +oo ) /\ n e. NN ) -> ( ( 1 / n ) < ( ( S.2 ` F ) - x ) <-> x < ( ( S.2 ` F ) - ( 1 / n ) ) ) ) |
| 144 | 8 | ad2antlr | |- ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR /\ x < ( S.2 ` F ) ) ) /\ -. ( S.2 ` F ) = +oo ) /\ n e. NN ) -> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) = ( ( S.2 ` F ) - ( 1 / n ) ) ) |
| 145 | 144 | breq2d | |- ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR /\ x < ( S.2 ` F ) ) ) /\ -. ( S.2 ` F ) = +oo ) /\ n e. NN ) -> ( x < if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <-> x < ( ( S.2 ` F ) - ( 1 / n ) ) ) ) |
| 146 | 143 145 | bitr4d | |- ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR /\ x < ( S.2 ` F ) ) ) /\ -. ( S.2 ` F ) = +oo ) /\ n e. NN ) -> ( ( 1 / n ) < ( ( S.2 ` F ) - x ) <-> x < if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) ) ) |
| 147 | 146 | rexbidva | |- ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR /\ x < ( S.2 ` F ) ) ) /\ -. ( S.2 ` F ) = +oo ) -> ( E. n e. NN ( 1 / n ) < ( ( S.2 ` F ) - x ) <-> E. n e. NN x < if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) ) ) |
| 148 | 138 147 | mpbid | |- ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR /\ x < ( S.2 ` F ) ) ) /\ -. ( S.2 ` F ) = +oo ) -> E. n e. NN x < if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) ) |
| 149 | 130 148 | pm2.61dan | |- ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR /\ x < ( S.2 ` F ) ) ) -> E. n e. NN x < if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) ) |
| 150 | 149 | expr | |- ( ( F : RR --> ( 0 [,] +oo ) /\ x e. RR ) -> ( x < ( S.2 ` F ) -> E. n e. NN x < if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) ) ) |
| 151 | rexr | |- ( x e. RR -> x e. RR* ) |
|
| 152 | xrltnle | |- ( ( x e. RR* /\ ( S.2 ` F ) e. RR* ) -> ( x < ( S.2 ` F ) <-> -. ( S.2 ` F ) <_ x ) ) |
|
| 153 | 151 10 152 | syl2anr | |- ( ( F : RR --> ( 0 [,] +oo ) /\ x e. RR ) -> ( x < ( S.2 ` F ) <-> -. ( S.2 ` F ) <_ x ) ) |
| 154 | 151 | ad2antlr | |- ( ( ( F : RR --> ( 0 [,] +oo ) /\ x e. RR ) /\ n e. NN ) -> x e. RR* ) |
| 155 | 38 | adantlr | |- ( ( ( F : RR --> ( 0 [,] +oo ) /\ x e. RR ) /\ n e. NN ) -> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) e. RR* ) |
| 156 | xrltnle | |- ( ( x e. RR* /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) e. RR* ) -> ( x < if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <-> -. if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x ) ) |
|
| 157 | 154 155 156 | syl2anc | |- ( ( ( F : RR --> ( 0 [,] +oo ) /\ x e. RR ) /\ n e. NN ) -> ( x < if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <-> -. if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x ) ) |
| 158 | 157 | rexbidva | |- ( ( F : RR --> ( 0 [,] +oo ) /\ x e. RR ) -> ( E. n e. NN x < if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <-> E. n e. NN -. if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x ) ) |
| 159 | rexnal | |- ( E. n e. NN -. if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x <-> -. A. n e. NN if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x ) |
|
| 160 | 158 159 | bitrdi | |- ( ( F : RR --> ( 0 [,] +oo ) /\ x e. RR ) -> ( E. n e. NN x < if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <-> -. A. n e. NN if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x ) ) |
| 161 | 150 153 160 | 3imtr3d | |- ( ( F : RR --> ( 0 [,] +oo ) /\ x e. RR ) -> ( -. ( S.2 ` F ) <_ x -> -. A. n e. NN if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x ) ) |
| 162 | 161 | con4d | |- ( ( F : RR --> ( 0 [,] +oo ) /\ x e. RR ) -> ( A. n e. NN if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x -> ( S.2 ` F ) <_ x ) ) |
| 163 | 10 | adantr | |- ( ( F : RR --> ( 0 [,] +oo ) /\ x = +oo ) -> ( S.2 ` F ) e. RR* ) |
| 164 | pnfge | |- ( ( S.2 ` F ) e. RR* -> ( S.2 ` F ) <_ +oo ) |
|
| 165 | 163 164 | syl | |- ( ( F : RR --> ( 0 [,] +oo ) /\ x = +oo ) -> ( S.2 ` F ) <_ +oo ) |
| 166 | simpr | |- ( ( F : RR --> ( 0 [,] +oo ) /\ x = +oo ) -> x = +oo ) |
|
| 167 | 165 166 | breqtrrd | |- ( ( F : RR --> ( 0 [,] +oo ) /\ x = +oo ) -> ( S.2 ` F ) <_ x ) |
| 168 | 167 | a1d | |- ( ( F : RR --> ( 0 [,] +oo ) /\ x = +oo ) -> ( A. n e. NN if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x -> ( S.2 ` F ) <_ x ) ) |
| 169 | 1nn | |- 1 e. NN |
|
| 170 | 169 | ne0ii | |- NN =/= (/) |
| 171 | r19.2z | |- ( ( NN =/= (/) /\ A. n e. NN if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x ) -> E. n e. NN if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x ) |
|
| 172 | 170 171 | mpan | |- ( A. n e. NN if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x -> E. n e. NN if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x ) |
| 173 | 37 | adantlr | |- ( ( ( F : RR --> ( 0 [,] +oo ) /\ x = -oo ) /\ n e. NN ) -> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) e. RR ) |
| 174 | mnflt | |- ( if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) e. RR -> -oo < if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) ) |
|
| 175 | rexr | |- ( if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) e. RR -> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) e. RR* ) |
|
| 176 | xrltnle | |- ( ( -oo e. RR* /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) e. RR* ) -> ( -oo < if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <-> -. if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ -oo ) ) |
|
| 177 | 15 175 176 | sylancr | |- ( if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) e. RR -> ( -oo < if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <-> -. if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ -oo ) ) |
| 178 | 174 177 | mpbid | |- ( if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) e. RR -> -. if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ -oo ) |
| 179 | 173 178 | syl | |- ( ( ( F : RR --> ( 0 [,] +oo ) /\ x = -oo ) /\ n e. NN ) -> -. if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ -oo ) |
| 180 | simplr | |- ( ( ( F : RR --> ( 0 [,] +oo ) /\ x = -oo ) /\ n e. NN ) -> x = -oo ) |
|
| 181 | 180 | breq2d | |- ( ( ( F : RR --> ( 0 [,] +oo ) /\ x = -oo ) /\ n e. NN ) -> ( if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x <-> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ -oo ) ) |
| 182 | 179 181 | mtbird | |- ( ( ( F : RR --> ( 0 [,] +oo ) /\ x = -oo ) /\ n e. NN ) -> -. if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x ) |
| 183 | 182 | nrexdv | |- ( ( F : RR --> ( 0 [,] +oo ) /\ x = -oo ) -> -. E. n e. NN if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x ) |
| 184 | 183 | pm2.21d | |- ( ( F : RR --> ( 0 [,] +oo ) /\ x = -oo ) -> ( E. n e. NN if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x -> ( S.2 ` F ) <_ x ) ) |
| 185 | 172 184 | syl5 | |- ( ( F : RR --> ( 0 [,] +oo ) /\ x = -oo ) -> ( A. n e. NN if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x -> ( S.2 ` F ) <_ x ) ) |
| 186 | 162 168 185 | 3jaodan | |- ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR \/ x = +oo \/ x = -oo ) ) -> ( A. n e. NN if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x -> ( S.2 ` F ) <_ x ) ) |
| 187 | 123 186 | sylan2b | |- ( ( F : RR --> ( 0 [,] +oo ) /\ x e. RR* ) -> ( A. n e. NN if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x -> ( S.2 ` F ) <_ x ) ) |
| 188 | 187 | ralrimiva | |- ( F : RR --> ( 0 [,] +oo ) -> A. x e. RR* ( A. n e. NN if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x -> ( S.2 ` F ) <_ x ) ) |
| 189 | 188 | adantr | |- ( ( F : RR --> ( 0 [,] +oo ) /\ ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) -> A. x e. RR* ( A. n e. NN if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x -> ( S.2 ` F ) <_ x ) ) |
| 190 | 109 83 | eqeltrrid | |- ( ( F : RR --> ( 0 [,] +oo ) /\ ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) -> sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) e. RR* ) |
| 191 | 122 189 190 | rspcdva | |- ( ( F : RR --> ( 0 [,] +oo ) /\ ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) -> ( A. n e. NN if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) -> ( S.2 ` F ) <_ sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) ) ) |
| 192 | 118 191 | mpd | |- ( ( F : RR --> ( 0 [,] +oo ) /\ ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) -> ( S.2 ` F ) <_ sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) ) |
| 193 | 192 109 | breqtrrdi | |- ( ( F : RR --> ( 0 [,] +oo ) /\ ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) -> ( S.2 ` F ) <_ sup ( ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) , RR* , < ) ) |
| 194 | itg2ub | |- ( ( F : RR --> ( 0 [,] +oo ) /\ ( g ` n ) e. dom S.1 /\ ( g ` n ) oR <_ F ) -> ( S.1 ` ( g ` n ) ) <_ ( S.2 ` F ) ) |
|
| 195 | 194 | 3expia | |- ( ( F : RR --> ( 0 [,] +oo ) /\ ( g ` n ) e. dom S.1 ) -> ( ( g ` n ) oR <_ F -> ( S.1 ` ( g ` n ) ) <_ ( S.2 ` F ) ) ) |
| 196 | 74 195 | sylan2 | |- ( ( F : RR --> ( 0 [,] +oo ) /\ ( g : NN --> dom S.1 /\ n e. NN ) ) -> ( ( g ` n ) oR <_ F -> ( S.1 ` ( g ` n ) ) <_ ( S.2 ` F ) ) ) |
| 197 | 196 | anassrs | |- ( ( ( F : RR --> ( 0 [,] +oo ) /\ g : NN --> dom S.1 ) /\ n e. NN ) -> ( ( g ` n ) oR <_ F -> ( S.1 ` ( g ` n ) ) <_ ( S.2 ` F ) ) ) |
| 198 | 197 | adantrd | |- ( ( ( F : RR --> ( 0 [,] +oo ) /\ g : NN --> dom S.1 ) /\ n e. NN ) -> ( ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) -> ( S.1 ` ( g ` n ) ) <_ ( S.2 ` F ) ) ) |
| 199 | 198 | ralimdva | |- ( ( F : RR --> ( 0 [,] +oo ) /\ g : NN --> dom S.1 ) -> ( A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) -> A. n e. NN ( S.1 ` ( g ` n ) ) <_ ( S.2 ` F ) ) ) |
| 200 | 199 | impr | |- ( ( F : RR --> ( 0 [,] +oo ) /\ ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) -> A. n e. NN ( S.1 ` ( g ` n ) ) <_ ( S.2 ` F ) ) |
| 201 | eqid | |- ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) = ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) |
|
| 202 | 89 201 101 | fvmpt | |- ( m e. NN -> ( ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) ` m ) = ( S.1 ` ( g ` m ) ) ) |
| 203 | 202 | breq1d | |- ( m e. NN -> ( ( ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) ` m ) <_ ( S.2 ` F ) <-> ( S.1 ` ( g ` m ) ) <_ ( S.2 ` F ) ) ) |
| 204 | 203 | ralbiia | |- ( A. m e. NN ( ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) ` m ) <_ ( S.2 ` F ) <-> A. m e. NN ( S.1 ` ( g ` m ) ) <_ ( S.2 ` F ) ) |
| 205 | 89 | breq1d | |- ( n = m -> ( ( S.1 ` ( g ` n ) ) <_ ( S.2 ` F ) <-> ( S.1 ` ( g ` m ) ) <_ ( S.2 ` F ) ) ) |
| 206 | 205 | cbvralvw | |- ( A. n e. NN ( S.1 ` ( g ` n ) ) <_ ( S.2 ` F ) <-> A. m e. NN ( S.1 ` ( g ` m ) ) <_ ( S.2 ` F ) ) |
| 207 | 204 206 | bitr4i | |- ( A. m e. NN ( ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) ` m ) <_ ( S.2 ` F ) <-> A. n e. NN ( S.1 ` ( g ` n ) ) <_ ( S.2 ` F ) ) |
| 208 | 200 207 | sylibr | |- ( ( F : RR --> ( 0 [,] +oo ) /\ ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) -> A. m e. NN ( ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) ` m ) <_ ( S.2 ` F ) ) |
| 209 | ffn | |- ( ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) : NN --> RR -> ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) Fn NN ) |
|
| 210 | breq1 | |- ( z = ( ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) ` m ) -> ( z <_ ( S.2 ` F ) <-> ( ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) ` m ) <_ ( S.2 ` F ) ) ) |
|
| 211 | 210 | ralrn | |- ( ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) Fn NN -> ( A. z e. ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) z <_ ( S.2 ` F ) <-> A. m e. NN ( ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) ` m ) <_ ( S.2 ` F ) ) ) |
| 212 | 78 209 211 | 3syl | |- ( ( F : RR --> ( 0 [,] +oo ) /\ ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) -> ( A. z e. ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) z <_ ( S.2 ` F ) <-> A. m e. NN ( ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) ` m ) <_ ( S.2 ` F ) ) ) |
| 213 | 208 212 | mpbird | |- ( ( F : RR --> ( 0 [,] +oo ) /\ ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) -> A. z e. ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) z <_ ( S.2 ` F ) ) |
| 214 | supxrleub | |- ( ( ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) C_ RR* /\ ( S.2 ` F ) e. RR* ) -> ( sup ( ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) , RR* , < ) <_ ( S.2 ` F ) <-> A. z e. ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) z <_ ( S.2 ` F ) ) ) |
|
| 215 | 81 73 214 | syl2anc | |- ( ( F : RR --> ( 0 [,] +oo ) /\ ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) -> ( sup ( ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) , RR* , < ) <_ ( S.2 ` F ) <-> A. z e. ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) z <_ ( S.2 ` F ) ) ) |
| 216 | 213 215 | mpbird | |- ( ( F : RR --> ( 0 [,] +oo ) /\ ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) -> sup ( ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) , RR* , < ) <_ ( S.2 ` F ) ) |
| 217 | 73 83 193 216 | xrletrid | |- ( ( F : RR --> ( 0 [,] +oo ) /\ ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) -> ( S.2 ` F ) = sup ( ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) , RR* , < ) ) |
| 218 | 69 72 217 | 3jca | |- ( ( F : RR --> ( 0 [,] +oo ) /\ ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) -> ( g : NN --> dom S.1 /\ A. n e. NN ( g ` n ) oR <_ F /\ ( S.2 ` F ) = sup ( ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) , RR* , < ) ) ) |
| 219 | 218 | ex | |- ( F : RR --> ( 0 [,] +oo ) -> ( ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) -> ( g : NN --> dom S.1 /\ A. n e. NN ( g ` n ) oR <_ F /\ ( S.2 ` F ) = sup ( ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) , RR* , < ) ) ) ) |
| 220 | 219 | eximdv | |- ( F : RR --> ( 0 [,] +oo ) -> ( E. g ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) -> E. g ( g : NN --> dom S.1 /\ A. n e. NN ( g ` n ) oR <_ F /\ ( S.2 ` F ) = sup ( ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) , RR* , < ) ) ) ) |
| 221 | 68 220 | mpd | |- ( F : RR --> ( 0 [,] +oo ) -> E. g ( g : NN --> dom S.1 /\ A. n e. NN ( g ` n ) oR <_ F /\ ( S.2 ` F ) = sup ( ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) , RR* , < ) ) ) |