This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An extended real is real iff it is strictly bounded by infinities. (Contributed by NM, 2-Feb-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xrrebnd | ⊢ ( 𝐴 ∈ ℝ* → ( 𝐴 ∈ ℝ ↔ ( -∞ < 𝐴 ∧ 𝐴 < +∞ ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnflt | ⊢ ( 𝐴 ∈ ℝ → -∞ < 𝐴 ) | |
| 2 | ltpnf | ⊢ ( 𝐴 ∈ ℝ → 𝐴 < +∞ ) | |
| 3 | 1 2 | jca | ⊢ ( 𝐴 ∈ ℝ → ( -∞ < 𝐴 ∧ 𝐴 < +∞ ) ) |
| 4 | nltpnft | ⊢ ( 𝐴 ∈ ℝ* → ( 𝐴 = +∞ ↔ ¬ 𝐴 < +∞ ) ) | |
| 5 | ngtmnft | ⊢ ( 𝐴 ∈ ℝ* → ( 𝐴 = -∞ ↔ ¬ -∞ < 𝐴 ) ) | |
| 6 | 4 5 | orbi12d | ⊢ ( 𝐴 ∈ ℝ* → ( ( 𝐴 = +∞ ∨ 𝐴 = -∞ ) ↔ ( ¬ 𝐴 < +∞ ∨ ¬ -∞ < 𝐴 ) ) ) |
| 7 | ianor | ⊢ ( ¬ ( -∞ < 𝐴 ∧ 𝐴 < +∞ ) ↔ ( ¬ -∞ < 𝐴 ∨ ¬ 𝐴 < +∞ ) ) | |
| 8 | orcom | ⊢ ( ( ¬ -∞ < 𝐴 ∨ ¬ 𝐴 < +∞ ) ↔ ( ¬ 𝐴 < +∞ ∨ ¬ -∞ < 𝐴 ) ) | |
| 9 | 7 8 | bitr2i | ⊢ ( ( ¬ 𝐴 < +∞ ∨ ¬ -∞ < 𝐴 ) ↔ ¬ ( -∞ < 𝐴 ∧ 𝐴 < +∞ ) ) |
| 10 | 6 9 | bitrdi | ⊢ ( 𝐴 ∈ ℝ* → ( ( 𝐴 = +∞ ∨ 𝐴 = -∞ ) ↔ ¬ ( -∞ < 𝐴 ∧ 𝐴 < +∞ ) ) ) |
| 11 | 10 | con2bid | ⊢ ( 𝐴 ∈ ℝ* → ( ( -∞ < 𝐴 ∧ 𝐴 < +∞ ) ↔ ¬ ( 𝐴 = +∞ ∨ 𝐴 = -∞ ) ) ) |
| 12 | elxr | ⊢ ( 𝐴 ∈ ℝ* ↔ ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) ) | |
| 13 | 3orass | ⊢ ( ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) ↔ ( 𝐴 ∈ ℝ ∨ ( 𝐴 = +∞ ∨ 𝐴 = -∞ ) ) ) | |
| 14 | orcom | ⊢ ( ( 𝐴 ∈ ℝ ∨ ( 𝐴 = +∞ ∨ 𝐴 = -∞ ) ) ↔ ( ( 𝐴 = +∞ ∨ 𝐴 = -∞ ) ∨ 𝐴 ∈ ℝ ) ) | |
| 15 | 13 14 | bitri | ⊢ ( ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) ↔ ( ( 𝐴 = +∞ ∨ 𝐴 = -∞ ) ∨ 𝐴 ∈ ℝ ) ) |
| 16 | 12 15 | sylbb | ⊢ ( 𝐴 ∈ ℝ* → ( ( 𝐴 = +∞ ∨ 𝐴 = -∞ ) ∨ 𝐴 ∈ ℝ ) ) |
| 17 | 16 | ord | ⊢ ( 𝐴 ∈ ℝ* → ( ¬ ( 𝐴 = +∞ ∨ 𝐴 = -∞ ) → 𝐴 ∈ ℝ ) ) |
| 18 | 11 17 | sylbid | ⊢ ( 𝐴 ∈ ℝ* → ( ( -∞ < 𝐴 ∧ 𝐴 < +∞ ) → 𝐴 ∈ ℝ ) ) |
| 19 | 3 18 | impbid2 | ⊢ ( 𝐴 ∈ ℝ* → ( 𝐴 ∈ ℝ ↔ ( -∞ < 𝐴 ∧ 𝐴 < +∞ ) ) ) |