This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The integral of a nonnegative real function is greater than or equal to zero. (Contributed by Mario Carneiro, 28-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | itg2ge0 | ⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → 0 ≤ ( ∫2 ‘ 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itg10 | ⊢ ( ∫1 ‘ ( ℝ × { 0 } ) ) = 0 | |
| 2 | ffvelcdm | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑦 ∈ ℝ ) → ( 𝐹 ‘ 𝑦 ) ∈ ( 0 [,] +∞ ) ) | |
| 3 | 0xr | ⊢ 0 ∈ ℝ* | |
| 4 | pnfxr | ⊢ +∞ ∈ ℝ* | |
| 5 | elicc1 | ⊢ ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( ( 𝐹 ‘ 𝑦 ) ∈ ( 0 [,] +∞ ) ↔ ( ( 𝐹 ‘ 𝑦 ) ∈ ℝ* ∧ 0 ≤ ( 𝐹 ‘ 𝑦 ) ∧ ( 𝐹 ‘ 𝑦 ) ≤ +∞ ) ) ) | |
| 6 | 3 4 5 | mp2an | ⊢ ( ( 𝐹 ‘ 𝑦 ) ∈ ( 0 [,] +∞ ) ↔ ( ( 𝐹 ‘ 𝑦 ) ∈ ℝ* ∧ 0 ≤ ( 𝐹 ‘ 𝑦 ) ∧ ( 𝐹 ‘ 𝑦 ) ≤ +∞ ) ) |
| 7 | 6 | simp2bi | ⊢ ( ( 𝐹 ‘ 𝑦 ) ∈ ( 0 [,] +∞ ) → 0 ≤ ( 𝐹 ‘ 𝑦 ) ) |
| 8 | 2 7 | syl | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑦 ∈ ℝ ) → 0 ≤ ( 𝐹 ‘ 𝑦 ) ) |
| 9 | 8 | ralrimiva | ⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ∀ 𝑦 ∈ ℝ 0 ≤ ( 𝐹 ‘ 𝑦 ) ) |
| 10 | 0re | ⊢ 0 ∈ ℝ | |
| 11 | fnconstg | ⊢ ( 0 ∈ ℝ → ( ℝ × { 0 } ) Fn ℝ ) | |
| 12 | 10 11 | mp1i | ⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ( ℝ × { 0 } ) Fn ℝ ) |
| 13 | ffn | ⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → 𝐹 Fn ℝ ) | |
| 14 | reex | ⊢ ℝ ∈ V | |
| 15 | 14 | a1i | ⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ℝ ∈ V ) |
| 16 | inidm | ⊢ ( ℝ ∩ ℝ ) = ℝ | |
| 17 | c0ex | ⊢ 0 ∈ V | |
| 18 | 17 | fvconst2 | ⊢ ( 𝑦 ∈ ℝ → ( ( ℝ × { 0 } ) ‘ 𝑦 ) = 0 ) |
| 19 | 18 | adantl | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑦 ∈ ℝ ) → ( ( ℝ × { 0 } ) ‘ 𝑦 ) = 0 ) |
| 20 | eqidd | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑦 ∈ ℝ ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) | |
| 21 | 12 13 15 15 16 19 20 | ofrfval | ⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ( ( ℝ × { 0 } ) ∘r ≤ 𝐹 ↔ ∀ 𝑦 ∈ ℝ 0 ≤ ( 𝐹 ‘ 𝑦 ) ) ) |
| 22 | 9 21 | mpbird | ⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ( ℝ × { 0 } ) ∘r ≤ 𝐹 ) |
| 23 | i1f0 | ⊢ ( ℝ × { 0 } ) ∈ dom ∫1 | |
| 24 | itg2ub | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( ℝ × { 0 } ) ∈ dom ∫1 ∧ ( ℝ × { 0 } ) ∘r ≤ 𝐹 ) → ( ∫1 ‘ ( ℝ × { 0 } ) ) ≤ ( ∫2 ‘ 𝐹 ) ) | |
| 25 | 23 24 | mp3an2 | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( ℝ × { 0 } ) ∘r ≤ 𝐹 ) → ( ∫1 ‘ ( ℝ × { 0 } ) ) ≤ ( ∫2 ‘ 𝐹 ) ) |
| 26 | 22 25 | mpdan | ⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ( ∫1 ‘ ( ℝ × { 0 } ) ) ≤ ( ∫2 ‘ 𝐹 ) ) |
| 27 | 1 26 | eqbrtrrid | ⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → 0 ≤ ( ∫2 ‘ 𝐹 ) ) |