This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in the set of extended reals. (Contributed by NM, 14-Oct-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elxr | ⊢ ( 𝐴 ∈ ℝ* ↔ ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xr | ⊢ ℝ* = ( ℝ ∪ { +∞ , -∞ } ) | |
| 2 | 1 | eleq2i | ⊢ ( 𝐴 ∈ ℝ* ↔ 𝐴 ∈ ( ℝ ∪ { +∞ , -∞ } ) ) |
| 3 | elun | ⊢ ( 𝐴 ∈ ( ℝ ∪ { +∞ , -∞ } ) ↔ ( 𝐴 ∈ ℝ ∨ 𝐴 ∈ { +∞ , -∞ } ) ) | |
| 4 | pnfex | ⊢ +∞ ∈ V | |
| 5 | mnfxr | ⊢ -∞ ∈ ℝ* | |
| 6 | 5 | elexi | ⊢ -∞ ∈ V |
| 7 | 4 6 | elpr2 | ⊢ ( 𝐴 ∈ { +∞ , -∞ } ↔ ( 𝐴 = +∞ ∨ 𝐴 = -∞ ) ) |
| 8 | 7 | orbi2i | ⊢ ( ( 𝐴 ∈ ℝ ∨ 𝐴 ∈ { +∞ , -∞ } ) ↔ ( 𝐴 ∈ ℝ ∨ ( 𝐴 = +∞ ∨ 𝐴 = -∞ ) ) ) |
| 9 | 3orass | ⊢ ( ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) ↔ ( 𝐴 ∈ ℝ ∨ ( 𝐴 = +∞ ∨ 𝐴 = -∞ ) ) ) | |
| 10 | 8 9 | bitr4i | ⊢ ( ( 𝐴 ∈ ℝ ∨ 𝐴 ∈ { +∞ , -∞ } ) ↔ ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) ) |
| 11 | 2 3 10 | 3bitri | ⊢ ( 𝐴 ∈ ℝ* ↔ ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) ) |