This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Disjunction of three antecedents (deduction). (Contributed by NM, 14-Oct-2005)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 3jaodan.1 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) | |
| 3jaodan.2 | ⊢ ( ( 𝜑 ∧ 𝜃 ) → 𝜒 ) | ||
| 3jaodan.3 | ⊢ ( ( 𝜑 ∧ 𝜏 ) → 𝜒 ) | ||
| Assertion | 3jaodan | ⊢ ( ( 𝜑 ∧ ( 𝜓 ∨ 𝜃 ∨ 𝜏 ) ) → 𝜒 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3jaodan.1 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) | |
| 2 | 3jaodan.2 | ⊢ ( ( 𝜑 ∧ 𝜃 ) → 𝜒 ) | |
| 3 | 3jaodan.3 | ⊢ ( ( 𝜑 ∧ 𝜏 ) → 𝜒 ) | |
| 4 | 1 | ex | ⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) |
| 5 | 2 | ex | ⊢ ( 𝜑 → ( 𝜃 → 𝜒 ) ) |
| 6 | 3 | ex | ⊢ ( 𝜑 → ( 𝜏 → 𝜒 ) ) |
| 7 | 4 5 6 | 3jaod | ⊢ ( 𝜑 → ( ( 𝜓 ∨ 𝜃 ∨ 𝜏 ) → 𝜒 ) ) |
| 8 | 7 | imp | ⊢ ( ( 𝜑 ∧ ( 𝜓 ∨ 𝜃 ∨ 𝜏 ) ) → 𝜒 ) |