This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A version of axcc3 that uses wffs instead of classes. (Contributed by Mario Carneiro, 7-Apr-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | axcc4.1 | ⊢ 𝐴 ∈ V | |
| axcc4.2 | ⊢ 𝑁 ≈ ω | ||
| axcc4.3 | ⊢ ( 𝑥 = ( 𝑓 ‘ 𝑛 ) → ( 𝜑 ↔ 𝜓 ) ) | ||
| Assertion | axcc4 | ⊢ ( ∀ 𝑛 ∈ 𝑁 ∃ 𝑥 ∈ 𝐴 𝜑 → ∃ 𝑓 ( 𝑓 : 𝑁 ⟶ 𝐴 ∧ ∀ 𝑛 ∈ 𝑁 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axcc4.1 | ⊢ 𝐴 ∈ V | |
| 2 | axcc4.2 | ⊢ 𝑁 ≈ ω | |
| 3 | axcc4.3 | ⊢ ( 𝑥 = ( 𝑓 ‘ 𝑛 ) → ( 𝜑 ↔ 𝜓 ) ) | |
| 4 | 1 | rabex | ⊢ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∈ V |
| 5 | 4 2 | axcc3 | ⊢ ∃ 𝑓 ( 𝑓 Fn 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ≠ ∅ → ( 𝑓 ‘ 𝑛 ) ∈ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ) ) |
| 6 | rabn0 | ⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ≠ ∅ ↔ ∃ 𝑥 ∈ 𝐴 𝜑 ) | |
| 7 | pm2.27 | ⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ≠ ∅ → ( ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ≠ ∅ → ( 𝑓 ‘ 𝑛 ) ∈ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ) → ( 𝑓 ‘ 𝑛 ) ∈ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ) ) | |
| 8 | 6 7 | sylbir | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 → ( ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ≠ ∅ → ( 𝑓 ‘ 𝑛 ) ∈ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ) → ( 𝑓 ‘ 𝑛 ) ∈ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ) ) |
| 9 | 3 | elrab | ⊢ ( ( 𝑓 ‘ 𝑛 ) ∈ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ↔ ( ( 𝑓 ‘ 𝑛 ) ∈ 𝐴 ∧ 𝜓 ) ) |
| 10 | 8 9 | imbitrdi | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 → ( ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ≠ ∅ → ( 𝑓 ‘ 𝑛 ) ∈ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ) → ( ( 𝑓 ‘ 𝑛 ) ∈ 𝐴 ∧ 𝜓 ) ) ) |
| 11 | 10 | ral2imi | ⊢ ( ∀ 𝑛 ∈ 𝑁 ∃ 𝑥 ∈ 𝐴 𝜑 → ( ∀ 𝑛 ∈ 𝑁 ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ≠ ∅ → ( 𝑓 ‘ 𝑛 ) ∈ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ) → ∀ 𝑛 ∈ 𝑁 ( ( 𝑓 ‘ 𝑛 ) ∈ 𝐴 ∧ 𝜓 ) ) ) |
| 12 | simpl | ⊢ ( ( ( 𝑓 ‘ 𝑛 ) ∈ 𝐴 ∧ 𝜓 ) → ( 𝑓 ‘ 𝑛 ) ∈ 𝐴 ) | |
| 13 | 12 | ralimi | ⊢ ( ∀ 𝑛 ∈ 𝑁 ( ( 𝑓 ‘ 𝑛 ) ∈ 𝐴 ∧ 𝜓 ) → ∀ 𝑛 ∈ 𝑁 ( 𝑓 ‘ 𝑛 ) ∈ 𝐴 ) |
| 14 | 11 13 | syl6 | ⊢ ( ∀ 𝑛 ∈ 𝑁 ∃ 𝑥 ∈ 𝐴 𝜑 → ( ∀ 𝑛 ∈ 𝑁 ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ≠ ∅ → ( 𝑓 ‘ 𝑛 ) ∈ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ) → ∀ 𝑛 ∈ 𝑁 ( 𝑓 ‘ 𝑛 ) ∈ 𝐴 ) ) |
| 15 | 14 | anim2d | ⊢ ( ∀ 𝑛 ∈ 𝑁 ∃ 𝑥 ∈ 𝐴 𝜑 → ( ( 𝑓 Fn 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ≠ ∅ → ( 𝑓 ‘ 𝑛 ) ∈ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ) ) → ( 𝑓 Fn 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑓 ‘ 𝑛 ) ∈ 𝐴 ) ) ) |
| 16 | ffnfv | ⊢ ( 𝑓 : 𝑁 ⟶ 𝐴 ↔ ( 𝑓 Fn 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑓 ‘ 𝑛 ) ∈ 𝐴 ) ) | |
| 17 | 15 16 | imbitrrdi | ⊢ ( ∀ 𝑛 ∈ 𝑁 ∃ 𝑥 ∈ 𝐴 𝜑 → ( ( 𝑓 Fn 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ≠ ∅ → ( 𝑓 ‘ 𝑛 ) ∈ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ) ) → 𝑓 : 𝑁 ⟶ 𝐴 ) ) |
| 18 | simpr | ⊢ ( ( ( 𝑓 ‘ 𝑛 ) ∈ 𝐴 ∧ 𝜓 ) → 𝜓 ) | |
| 19 | 18 | ralimi | ⊢ ( ∀ 𝑛 ∈ 𝑁 ( ( 𝑓 ‘ 𝑛 ) ∈ 𝐴 ∧ 𝜓 ) → ∀ 𝑛 ∈ 𝑁 𝜓 ) |
| 20 | 11 19 | syl6 | ⊢ ( ∀ 𝑛 ∈ 𝑁 ∃ 𝑥 ∈ 𝐴 𝜑 → ( ∀ 𝑛 ∈ 𝑁 ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ≠ ∅ → ( 𝑓 ‘ 𝑛 ) ∈ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ) → ∀ 𝑛 ∈ 𝑁 𝜓 ) ) |
| 21 | 20 | adantld | ⊢ ( ∀ 𝑛 ∈ 𝑁 ∃ 𝑥 ∈ 𝐴 𝜑 → ( ( 𝑓 Fn 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ≠ ∅ → ( 𝑓 ‘ 𝑛 ) ∈ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ) ) → ∀ 𝑛 ∈ 𝑁 𝜓 ) ) |
| 22 | 17 21 | jcad | ⊢ ( ∀ 𝑛 ∈ 𝑁 ∃ 𝑥 ∈ 𝐴 𝜑 → ( ( 𝑓 Fn 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ≠ ∅ → ( 𝑓 ‘ 𝑛 ) ∈ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ) ) → ( 𝑓 : 𝑁 ⟶ 𝐴 ∧ ∀ 𝑛 ∈ 𝑁 𝜓 ) ) ) |
| 23 | 22 | eximdv | ⊢ ( ∀ 𝑛 ∈ 𝑁 ∃ 𝑥 ∈ 𝐴 𝜑 → ( ∃ 𝑓 ( 𝑓 Fn 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ≠ ∅ → ( 𝑓 ‘ 𝑛 ) ∈ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ) ) → ∃ 𝑓 ( 𝑓 : 𝑁 ⟶ 𝐴 ∧ ∀ 𝑛 ∈ 𝑁 𝜓 ) ) ) |
| 24 | 5 23 | mpi | ⊢ ( ∀ 𝑛 ∈ 𝑁 ∃ 𝑥 ∈ 𝐴 𝜑 → ∃ 𝑓 ( 𝑓 : 𝑁 ⟶ 𝐴 ∧ ∀ 𝑛 ∈ 𝑁 𝜓 ) ) |