This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subject to the conditions coming from mbfi1fseq , the integral of the sequence of simple functions converges to the integral of the target function. (Contributed by Mario Carneiro, 17-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itg2i1fseq.1 | ⊢ ( 𝜑 → 𝐹 ∈ MblFn ) | |
| itg2i1fseq.2 | ⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ) | ||
| itg2i1fseq.3 | ⊢ ( 𝜑 → 𝑃 : ℕ ⟶ dom ∫1 ) | ||
| itg2i1fseq.4 | ⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑃 ‘ 𝑛 ) ∧ ( 𝑃 ‘ 𝑛 ) ∘r ≤ ( 𝑃 ‘ ( 𝑛 + 1 ) ) ) ) | ||
| itg2i1fseq.5 | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) | ||
| itg2i1fseq.6 | ⊢ 𝑆 = ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑃 ‘ 𝑚 ) ) ) | ||
| Assertion | itg2i1fseq | ⊢ ( 𝜑 → ( ∫2 ‘ 𝐹 ) = sup ( ran 𝑆 , ℝ* , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itg2i1fseq.1 | ⊢ ( 𝜑 → 𝐹 ∈ MblFn ) | |
| 2 | itg2i1fseq.2 | ⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ) | |
| 3 | itg2i1fseq.3 | ⊢ ( 𝜑 → 𝑃 : ℕ ⟶ dom ∫1 ) | |
| 4 | itg2i1fseq.4 | ⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑃 ‘ 𝑛 ) ∧ ( 𝑃 ‘ 𝑛 ) ∘r ≤ ( 𝑃 ‘ ( 𝑛 + 1 ) ) ) ) | |
| 5 | itg2i1fseq.5 | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) | |
| 6 | itg2i1fseq.6 | ⊢ 𝑆 = ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑃 ‘ 𝑚 ) ) ) | |
| 7 | fveq2 | ⊢ ( 𝑛 = 𝑚 → ( 𝑃 ‘ 𝑛 ) = ( 𝑃 ‘ 𝑚 ) ) | |
| 8 | 7 | fveq1d | ⊢ ( 𝑛 = 𝑚 → ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) = ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑥 ) ) |
| 9 | 8 | cbvmptv | ⊢ ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ) = ( 𝑚 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑥 ) ) |
| 10 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑥 ) = ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ) | |
| 11 | 10 | mpteq2dv | ⊢ ( 𝑥 = 𝑦 → ( 𝑚 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑥 ) ) = ( 𝑚 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ) ) |
| 12 | 9 11 | eqtrid | ⊢ ( 𝑥 = 𝑦 → ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ) = ( 𝑚 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ) ) |
| 13 | 12 | rneqd | ⊢ ( 𝑥 = 𝑦 → ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ) = ran ( 𝑚 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ) ) |
| 14 | 13 | supeq1d | ⊢ ( 𝑥 = 𝑦 → sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) = sup ( ran ( 𝑚 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ) , ℝ , < ) ) |
| 15 | 14 | cbvmptv | ⊢ ( 𝑥 ∈ ℝ ↦ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) = ( 𝑦 ∈ ℝ ↦ sup ( ran ( 𝑚 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ) , ℝ , < ) ) |
| 16 | 3 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑃 ‘ 𝑚 ) ∈ dom ∫1 ) |
| 17 | i1fmbf | ⊢ ( ( 𝑃 ‘ 𝑚 ) ∈ dom ∫1 → ( 𝑃 ‘ 𝑚 ) ∈ MblFn ) | |
| 18 | 16 17 | syl | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑃 ‘ 𝑚 ) ∈ MblFn ) |
| 19 | i1ff | ⊢ ( ( 𝑃 ‘ 𝑚 ) ∈ dom ∫1 → ( 𝑃 ‘ 𝑚 ) : ℝ ⟶ ℝ ) | |
| 20 | 16 19 | syl | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑃 ‘ 𝑚 ) : ℝ ⟶ ℝ ) |
| 21 | 7 | breq2d | ⊢ ( 𝑛 = 𝑚 → ( 0𝑝 ∘r ≤ ( 𝑃 ‘ 𝑛 ) ↔ 0𝑝 ∘r ≤ ( 𝑃 ‘ 𝑚 ) ) ) |
| 22 | fvoveq1 | ⊢ ( 𝑛 = 𝑚 → ( 𝑃 ‘ ( 𝑛 + 1 ) ) = ( 𝑃 ‘ ( 𝑚 + 1 ) ) ) | |
| 23 | 7 22 | breq12d | ⊢ ( 𝑛 = 𝑚 → ( ( 𝑃 ‘ 𝑛 ) ∘r ≤ ( 𝑃 ‘ ( 𝑛 + 1 ) ) ↔ ( 𝑃 ‘ 𝑚 ) ∘r ≤ ( 𝑃 ‘ ( 𝑚 + 1 ) ) ) ) |
| 24 | 21 23 | anbi12d | ⊢ ( 𝑛 = 𝑚 → ( ( 0𝑝 ∘r ≤ ( 𝑃 ‘ 𝑛 ) ∧ ( 𝑃 ‘ 𝑛 ) ∘r ≤ ( 𝑃 ‘ ( 𝑛 + 1 ) ) ) ↔ ( 0𝑝 ∘r ≤ ( 𝑃 ‘ 𝑚 ) ∧ ( 𝑃 ‘ 𝑚 ) ∘r ≤ ( 𝑃 ‘ ( 𝑚 + 1 ) ) ) ) ) |
| 25 | 24 | rspccva | ⊢ ( ( ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑃 ‘ 𝑛 ) ∧ ( 𝑃 ‘ 𝑛 ) ∘r ≤ ( 𝑃 ‘ ( 𝑛 + 1 ) ) ) ∧ 𝑚 ∈ ℕ ) → ( 0𝑝 ∘r ≤ ( 𝑃 ‘ 𝑚 ) ∧ ( 𝑃 ‘ 𝑚 ) ∘r ≤ ( 𝑃 ‘ ( 𝑚 + 1 ) ) ) ) |
| 26 | 4 25 | sylan | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 0𝑝 ∘r ≤ ( 𝑃 ‘ 𝑚 ) ∧ ( 𝑃 ‘ 𝑚 ) ∘r ≤ ( 𝑃 ‘ ( 𝑚 + 1 ) ) ) ) |
| 27 | 26 | simpld | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 0𝑝 ∘r ≤ ( 𝑃 ‘ 𝑚 ) ) |
| 28 | 0plef | ⊢ ( ( 𝑃 ‘ 𝑚 ) : ℝ ⟶ ( 0 [,) +∞ ) ↔ ( ( 𝑃 ‘ 𝑚 ) : ℝ ⟶ ℝ ∧ 0𝑝 ∘r ≤ ( 𝑃 ‘ 𝑚 ) ) ) | |
| 29 | 20 27 28 | sylanbrc | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑃 ‘ 𝑚 ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 30 | 26 | simprd | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑃 ‘ 𝑚 ) ∘r ≤ ( 𝑃 ‘ ( 𝑚 + 1 ) ) ) |
| 31 | rge0ssre | ⊢ ( 0 [,) +∞ ) ⊆ ℝ | |
| 32 | 2 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 𝐹 ‘ 𝑦 ) ∈ ( 0 [,) +∞ ) ) |
| 33 | 31 32 | sselid | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) |
| 34 | 1 2 3 4 5 | itg2i1fseqle | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑃 ‘ 𝑚 ) ∘r ≤ 𝐹 ) |
| 35 | 20 | ffnd | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑃 ‘ 𝑚 ) Fn ℝ ) |
| 36 | 2 | ffnd | ⊢ ( 𝜑 → 𝐹 Fn ℝ ) |
| 37 | 36 | adantr | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝐹 Fn ℝ ) |
| 38 | reex | ⊢ ℝ ∈ V | |
| 39 | 38 | a1i | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ℝ ∈ V ) |
| 40 | inidm | ⊢ ( ℝ ∩ ℝ ) = ℝ | |
| 41 | eqidd | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) = ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ) | |
| 42 | eqidd | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) | |
| 43 | 35 37 39 39 40 41 42 | ofrfval | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑃 ‘ 𝑚 ) ∘r ≤ 𝐹 ↔ ∀ 𝑦 ∈ ℝ ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) |
| 44 | 34 43 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ∀ 𝑦 ∈ ℝ ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑦 ) ) |
| 45 | 44 | r19.21bi | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑦 ) ) |
| 46 | 45 | an32s | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑦 ) ) |
| 47 | 46 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ∀ 𝑚 ∈ ℕ ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑦 ) ) |
| 48 | brralrspcev | ⊢ ( ( ( 𝐹 ‘ 𝑦 ) ∈ ℝ ∧ ∀ 𝑚 ∈ ℕ ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑦 ) ) → ∃ 𝑧 ∈ ℝ ∀ 𝑚 ∈ ℕ ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ≤ 𝑧 ) | |
| 49 | 33 47 48 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ∃ 𝑧 ∈ ℝ ∀ 𝑚 ∈ ℕ ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ≤ 𝑧 ) |
| 50 | 7 | fveq2d | ⊢ ( 𝑛 = 𝑚 → ( ∫2 ‘ ( 𝑃 ‘ 𝑛 ) ) = ( ∫2 ‘ ( 𝑃 ‘ 𝑚 ) ) ) |
| 51 | 50 | cbvmptv | ⊢ ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑃 ‘ 𝑛 ) ) ) = ( 𝑚 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑃 ‘ 𝑚 ) ) ) |
| 52 | 51 | rneqi | ⊢ ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑃 ‘ 𝑛 ) ) ) = ran ( 𝑚 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑃 ‘ 𝑚 ) ) ) |
| 53 | 52 | supeq1i | ⊢ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑃 ‘ 𝑛 ) ) ) , ℝ* , < ) = sup ( ran ( 𝑚 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑃 ‘ 𝑚 ) ) ) , ℝ* , < ) |
| 54 | 15 18 29 30 49 53 | itg2mono | ⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) ) = sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑃 ‘ 𝑛 ) ) ) , ℝ* , < ) ) |
| 55 | 2 | feqmptd | ⊢ ( 𝜑 → 𝐹 = ( 𝑦 ∈ ℝ ↦ ( 𝐹 ‘ 𝑦 ) ) ) |
| 56 | 7 | fveq1d | ⊢ ( 𝑛 = 𝑚 → ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) = ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ) |
| 57 | 56 | cbvmptv | ⊢ ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) = ( 𝑚 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ) |
| 58 | 57 | rneqi | ⊢ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) = ran ( 𝑚 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ) |
| 59 | 58 | supeq1i | ⊢ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) , ℝ , < ) = sup ( ran ( 𝑚 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ) , ℝ , < ) |
| 60 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 61 | 1zzd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 1 ∈ ℤ ) | |
| 62 | 20 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ∈ ℝ ) |
| 63 | 62 | an32s | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ∈ ℝ ) |
| 64 | 63 57 | fmptd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) : ℕ ⟶ ℝ ) |
| 65 | peano2nn | ⊢ ( 𝑚 ∈ ℕ → ( 𝑚 + 1 ) ∈ ℕ ) | |
| 66 | ffvelcdm | ⊢ ( ( 𝑃 : ℕ ⟶ dom ∫1 ∧ ( 𝑚 + 1 ) ∈ ℕ ) → ( 𝑃 ‘ ( 𝑚 + 1 ) ) ∈ dom ∫1 ) | |
| 67 | 3 65 66 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑃 ‘ ( 𝑚 + 1 ) ) ∈ dom ∫1 ) |
| 68 | i1ff | ⊢ ( ( 𝑃 ‘ ( 𝑚 + 1 ) ) ∈ dom ∫1 → ( 𝑃 ‘ ( 𝑚 + 1 ) ) : ℝ ⟶ ℝ ) | |
| 69 | 67 68 | syl | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑃 ‘ ( 𝑚 + 1 ) ) : ℝ ⟶ ℝ ) |
| 70 | 69 | ffnd | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑃 ‘ ( 𝑚 + 1 ) ) Fn ℝ ) |
| 71 | eqidd | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → ( ( 𝑃 ‘ ( 𝑚 + 1 ) ) ‘ 𝑦 ) = ( ( 𝑃 ‘ ( 𝑚 + 1 ) ) ‘ 𝑦 ) ) | |
| 72 | 35 70 39 39 40 41 71 | ofrfval | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑃 ‘ 𝑚 ) ∘r ≤ ( 𝑃 ‘ ( 𝑚 + 1 ) ) ↔ ∀ 𝑦 ∈ ℝ ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ≤ ( ( 𝑃 ‘ ( 𝑚 + 1 ) ) ‘ 𝑦 ) ) ) |
| 73 | 30 72 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ∀ 𝑦 ∈ ℝ ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ≤ ( ( 𝑃 ‘ ( 𝑚 + 1 ) ) ‘ 𝑦 ) ) |
| 74 | 73 | r19.21bi | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ≤ ( ( 𝑃 ‘ ( 𝑚 + 1 ) ) ‘ 𝑦 ) ) |
| 75 | 74 | an32s | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ≤ ( ( 𝑃 ‘ ( 𝑚 + 1 ) ) ‘ 𝑦 ) ) |
| 76 | eqid | ⊢ ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) = ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) | |
| 77 | fvex | ⊢ ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ∈ V | |
| 78 | 56 76 77 | fvmpt | ⊢ ( 𝑚 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑚 ) = ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ) |
| 79 | 78 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑚 ) = ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ) |
| 80 | fveq2 | ⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( 𝑃 ‘ 𝑛 ) = ( 𝑃 ‘ ( 𝑚 + 1 ) ) ) | |
| 81 | 80 | fveq1d | ⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) = ( ( 𝑃 ‘ ( 𝑚 + 1 ) ) ‘ 𝑦 ) ) |
| 82 | fvex | ⊢ ( ( 𝑃 ‘ ( 𝑚 + 1 ) ) ‘ 𝑦 ) ∈ V | |
| 83 | 81 76 82 | fvmpt | ⊢ ( ( 𝑚 + 1 ) ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ ( 𝑚 + 1 ) ) = ( ( 𝑃 ‘ ( 𝑚 + 1 ) ) ‘ 𝑦 ) ) |
| 84 | 65 83 | syl | ⊢ ( 𝑚 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ ( 𝑚 + 1 ) ) = ( ( 𝑃 ‘ ( 𝑚 + 1 ) ) ‘ 𝑦 ) ) |
| 85 | 84 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ ( 𝑚 + 1 ) ) = ( ( 𝑃 ‘ ( 𝑚 + 1 ) ) ‘ 𝑦 ) ) |
| 86 | 75 79 85 | 3brtr4d | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑚 ) ≤ ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ ( 𝑚 + 1 ) ) ) |
| 87 | 78 | breq1d | ⊢ ( 𝑚 ∈ ℕ → ( ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑚 ) ≤ 𝑧 ↔ ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ≤ 𝑧 ) ) |
| 88 | 87 | ralbiia | ⊢ ( ∀ 𝑚 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑚 ) ≤ 𝑧 ↔ ∀ 𝑚 ∈ ℕ ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ≤ 𝑧 ) |
| 89 | 88 | rexbii | ⊢ ( ∃ 𝑧 ∈ ℝ ∀ 𝑚 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑚 ) ≤ 𝑧 ↔ ∃ 𝑧 ∈ ℝ ∀ 𝑚 ∈ ℕ ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ≤ 𝑧 ) |
| 90 | 49 89 | sylibr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ∃ 𝑧 ∈ ℝ ∀ 𝑚 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑚 ) ≤ 𝑧 ) |
| 91 | 60 61 64 86 90 | climsup | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) , ℝ , < ) ) |
| 92 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) = ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) | |
| 93 | 92 | mpteq2dv | ⊢ ( 𝑥 = 𝑦 → ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ) = ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ) |
| 94 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) | |
| 95 | 93 94 | breq12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ↔ ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐹 ‘ 𝑦 ) ) ) |
| 96 | 95 | rspccva | ⊢ ( ( ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ∧ 𝑦 ∈ ℝ ) → ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐹 ‘ 𝑦 ) ) |
| 97 | 5 96 | sylan | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐹 ‘ 𝑦 ) ) |
| 98 | climuni | ⊢ ( ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) , ℝ , < ) ∧ ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐹 ‘ 𝑦 ) ) → sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) , ℝ , < ) = ( 𝐹 ‘ 𝑦 ) ) | |
| 99 | 91 97 98 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) , ℝ , < ) = ( 𝐹 ‘ 𝑦 ) ) |
| 100 | 59 99 | eqtr3id | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → sup ( ran ( 𝑚 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ) , ℝ , < ) = ( 𝐹 ‘ 𝑦 ) ) |
| 101 | 100 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑦 ∈ ℝ ↦ sup ( ran ( 𝑚 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ) , ℝ , < ) ) = ( 𝑦 ∈ ℝ ↦ ( 𝐹 ‘ 𝑦 ) ) ) |
| 102 | 55 101 | eqtr4d | ⊢ ( 𝜑 → 𝐹 = ( 𝑦 ∈ ℝ ↦ sup ( ran ( 𝑚 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ) , ℝ , < ) ) ) |
| 103 | 102 15 | eqtr4di | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ ℝ ↦ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) ) |
| 104 | 103 | fveq2d | ⊢ ( 𝜑 → ( ∫2 ‘ 𝐹 ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) ) ) |
| 105 | itg2itg1 | ⊢ ( ( ( 𝑃 ‘ 𝑚 ) ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ ( 𝑃 ‘ 𝑚 ) ) → ( ∫2 ‘ ( 𝑃 ‘ 𝑚 ) ) = ( ∫1 ‘ ( 𝑃 ‘ 𝑚 ) ) ) | |
| 106 | 16 27 105 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ∫2 ‘ ( 𝑃 ‘ 𝑚 ) ) = ( ∫1 ‘ ( 𝑃 ‘ 𝑚 ) ) ) |
| 107 | 106 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑚 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑃 ‘ 𝑚 ) ) ) = ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑃 ‘ 𝑚 ) ) ) ) |
| 108 | 6 107 | eqtr4id | ⊢ ( 𝜑 → 𝑆 = ( 𝑚 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑃 ‘ 𝑚 ) ) ) ) |
| 109 | 108 51 | eqtr4di | ⊢ ( 𝜑 → 𝑆 = ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑃 ‘ 𝑛 ) ) ) ) |
| 110 | 109 | rneqd | ⊢ ( 𝜑 → ran 𝑆 = ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑃 ‘ 𝑛 ) ) ) ) |
| 111 | 110 | supeq1d | ⊢ ( 𝜑 → sup ( ran 𝑆 , ℝ* , < ) = sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑃 ‘ 𝑛 ) ) ) , ℝ* , < ) ) |
| 112 | 54 104 111 | 3eqtr4d | ⊢ ( 𝜑 → ( ∫2 ‘ 𝐹 ) = sup ( ran 𝑆 , ℝ* , < ) ) |