This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There exists a positive integer whose reciprocal is less than a given positive real. Exercise 3 of Apostol p. 28. (Contributed by NM, 8-Nov-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnrecl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ∃ 𝑛 ∈ ℕ ( 1 / 𝑛 ) < 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 𝐴 ∈ ℝ ) | |
| 2 | gt0ne0 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 𝐴 ≠ 0 ) | |
| 3 | 1 2 | rereccld | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( 1 / 𝐴 ) ∈ ℝ ) |
| 4 | arch | ⊢ ( ( 1 / 𝐴 ) ∈ ℝ → ∃ 𝑛 ∈ ℕ ( 1 / 𝐴 ) < 𝑛 ) | |
| 5 | 3 4 | syl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ∃ 𝑛 ∈ ℕ ( 1 / 𝐴 ) < 𝑛 ) |
| 6 | recgt0 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 0 < ( 1 / 𝐴 ) ) | |
| 7 | 3 6 | jca | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( ( 1 / 𝐴 ) ∈ ℝ ∧ 0 < ( 1 / 𝐴 ) ) ) |
| 8 | nnre | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ ) | |
| 9 | nngt0 | ⊢ ( 𝑛 ∈ ℕ → 0 < 𝑛 ) | |
| 10 | 8 9 | jca | ⊢ ( 𝑛 ∈ ℕ → ( 𝑛 ∈ ℝ ∧ 0 < 𝑛 ) ) |
| 11 | ltrec | ⊢ ( ( ( ( 1 / 𝐴 ) ∈ ℝ ∧ 0 < ( 1 / 𝐴 ) ) ∧ ( 𝑛 ∈ ℝ ∧ 0 < 𝑛 ) ) → ( ( 1 / 𝐴 ) < 𝑛 ↔ ( 1 / 𝑛 ) < ( 1 / ( 1 / 𝐴 ) ) ) ) | |
| 12 | 7 10 11 | syl2an | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ 𝑛 ∈ ℕ ) → ( ( 1 / 𝐴 ) < 𝑛 ↔ ( 1 / 𝑛 ) < ( 1 / ( 1 / 𝐴 ) ) ) ) |
| 13 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 14 | 13 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 𝐴 ∈ ℂ ) |
| 15 | 14 2 | recrecd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( 1 / ( 1 / 𝐴 ) ) = 𝐴 ) |
| 16 | 15 | breq2d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( ( 1 / 𝑛 ) < ( 1 / ( 1 / 𝐴 ) ) ↔ ( 1 / 𝑛 ) < 𝐴 ) ) |
| 17 | 16 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ 𝑛 ∈ ℕ ) → ( ( 1 / 𝑛 ) < ( 1 / ( 1 / 𝐴 ) ) ↔ ( 1 / 𝑛 ) < 𝐴 ) ) |
| 18 | 12 17 | bitrd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ 𝑛 ∈ ℕ ) → ( ( 1 / 𝐴 ) < 𝑛 ↔ ( 1 / 𝑛 ) < 𝐴 ) ) |
| 19 | 18 | rexbidva | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( ∃ 𝑛 ∈ ℕ ( 1 / 𝐴 ) < 𝑛 ↔ ∃ 𝑛 ∈ ℕ ( 1 / 𝑛 ) < 𝐴 ) ) |
| 20 | 5 19 | mpbid | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ∃ 𝑛 ∈ ℕ ( 1 / 𝑛 ) < 𝐴 ) |