This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any upper bound on the integrals of all simple functions G dominated by F is greater than ( S.2F ) , the least upper bound. (Contributed by Mario Carneiro, 28-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | itg2leub | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐴 ∈ ℝ* ) → ( ( ∫2 ‘ 𝐹 ) ≤ 𝐴 ↔ ∀ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 → ( ∫1 ‘ 𝑔 ) ≤ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } = { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } | |
| 2 | 1 | itg2val | ⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ( ∫2 ‘ 𝐹 ) = sup ( { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } , ℝ* , < ) ) |
| 3 | 2 | adantr | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐴 ∈ ℝ* ) → ( ∫2 ‘ 𝐹 ) = sup ( { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } , ℝ* , < ) ) |
| 4 | 3 | breq1d | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐴 ∈ ℝ* ) → ( ( ∫2 ‘ 𝐹 ) ≤ 𝐴 ↔ sup ( { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } , ℝ* , < ) ≤ 𝐴 ) ) |
| 5 | 1 | itg2lcl | ⊢ { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } ⊆ ℝ* |
| 6 | supxrleub | ⊢ ( ( { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } ⊆ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( sup ( { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } , ℝ* , < ) ≤ 𝐴 ↔ ∀ 𝑧 ∈ { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } 𝑧 ≤ 𝐴 ) ) | |
| 7 | 5 6 | mpan | ⊢ ( 𝐴 ∈ ℝ* → ( sup ( { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } , ℝ* , < ) ≤ 𝐴 ↔ ∀ 𝑧 ∈ { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } 𝑧 ≤ 𝐴 ) ) |
| 8 | 7 | adantl | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐴 ∈ ℝ* ) → ( sup ( { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } , ℝ* , < ) ≤ 𝐴 ↔ ∀ 𝑧 ∈ { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } 𝑧 ≤ 𝐴 ) ) |
| 9 | eqeq1 | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 = ( ∫1 ‘ 𝑔 ) ↔ 𝑧 = ( ∫1 ‘ 𝑔 ) ) ) | |
| 10 | 9 | anbi2d | ⊢ ( 𝑥 = 𝑧 → ( ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) ↔ ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑧 = ( ∫1 ‘ 𝑔 ) ) ) ) |
| 11 | 10 | rexbidv | ⊢ ( 𝑥 = 𝑧 → ( ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) ↔ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑧 = ( ∫1 ‘ 𝑔 ) ) ) ) |
| 12 | 11 | ralab | ⊢ ( ∀ 𝑧 ∈ { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } 𝑧 ≤ 𝐴 ↔ ∀ 𝑧 ( ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑧 = ( ∫1 ‘ 𝑔 ) ) → 𝑧 ≤ 𝐴 ) ) |
| 13 | r19.23v | ⊢ ( ∀ 𝑔 ∈ dom ∫1 ( ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑧 = ( ∫1 ‘ 𝑔 ) ) → 𝑧 ≤ 𝐴 ) ↔ ( ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑧 = ( ∫1 ‘ 𝑔 ) ) → 𝑧 ≤ 𝐴 ) ) | |
| 14 | ancomst | ⊢ ( ( ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑧 = ( ∫1 ‘ 𝑔 ) ) → 𝑧 ≤ 𝐴 ) ↔ ( ( 𝑧 = ( ∫1 ‘ 𝑔 ) ∧ 𝑔 ∘r ≤ 𝐹 ) → 𝑧 ≤ 𝐴 ) ) | |
| 15 | impexp | ⊢ ( ( ( 𝑧 = ( ∫1 ‘ 𝑔 ) ∧ 𝑔 ∘r ≤ 𝐹 ) → 𝑧 ≤ 𝐴 ) ↔ ( 𝑧 = ( ∫1 ‘ 𝑔 ) → ( 𝑔 ∘r ≤ 𝐹 → 𝑧 ≤ 𝐴 ) ) ) | |
| 16 | 14 15 | bitri | ⊢ ( ( ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑧 = ( ∫1 ‘ 𝑔 ) ) → 𝑧 ≤ 𝐴 ) ↔ ( 𝑧 = ( ∫1 ‘ 𝑔 ) → ( 𝑔 ∘r ≤ 𝐹 → 𝑧 ≤ 𝐴 ) ) ) |
| 17 | 16 | ralbii | ⊢ ( ∀ 𝑔 ∈ dom ∫1 ( ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑧 = ( ∫1 ‘ 𝑔 ) ) → 𝑧 ≤ 𝐴 ) ↔ ∀ 𝑔 ∈ dom ∫1 ( 𝑧 = ( ∫1 ‘ 𝑔 ) → ( 𝑔 ∘r ≤ 𝐹 → 𝑧 ≤ 𝐴 ) ) ) |
| 18 | 13 17 | bitr3i | ⊢ ( ( ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑧 = ( ∫1 ‘ 𝑔 ) ) → 𝑧 ≤ 𝐴 ) ↔ ∀ 𝑔 ∈ dom ∫1 ( 𝑧 = ( ∫1 ‘ 𝑔 ) → ( 𝑔 ∘r ≤ 𝐹 → 𝑧 ≤ 𝐴 ) ) ) |
| 19 | 18 | albii | ⊢ ( ∀ 𝑧 ( ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑧 = ( ∫1 ‘ 𝑔 ) ) → 𝑧 ≤ 𝐴 ) ↔ ∀ 𝑧 ∀ 𝑔 ∈ dom ∫1 ( 𝑧 = ( ∫1 ‘ 𝑔 ) → ( 𝑔 ∘r ≤ 𝐹 → 𝑧 ≤ 𝐴 ) ) ) |
| 20 | ralcom4 | ⊢ ( ∀ 𝑔 ∈ dom ∫1 ∀ 𝑧 ( 𝑧 = ( ∫1 ‘ 𝑔 ) → ( 𝑔 ∘r ≤ 𝐹 → 𝑧 ≤ 𝐴 ) ) ↔ ∀ 𝑧 ∀ 𝑔 ∈ dom ∫1 ( 𝑧 = ( ∫1 ‘ 𝑔 ) → ( 𝑔 ∘r ≤ 𝐹 → 𝑧 ≤ 𝐴 ) ) ) | |
| 21 | fvex | ⊢ ( ∫1 ‘ 𝑔 ) ∈ V | |
| 22 | breq1 | ⊢ ( 𝑧 = ( ∫1 ‘ 𝑔 ) → ( 𝑧 ≤ 𝐴 ↔ ( ∫1 ‘ 𝑔 ) ≤ 𝐴 ) ) | |
| 23 | 22 | imbi2d | ⊢ ( 𝑧 = ( ∫1 ‘ 𝑔 ) → ( ( 𝑔 ∘r ≤ 𝐹 → 𝑧 ≤ 𝐴 ) ↔ ( 𝑔 ∘r ≤ 𝐹 → ( ∫1 ‘ 𝑔 ) ≤ 𝐴 ) ) ) |
| 24 | 21 23 | ceqsalv | ⊢ ( ∀ 𝑧 ( 𝑧 = ( ∫1 ‘ 𝑔 ) → ( 𝑔 ∘r ≤ 𝐹 → 𝑧 ≤ 𝐴 ) ) ↔ ( 𝑔 ∘r ≤ 𝐹 → ( ∫1 ‘ 𝑔 ) ≤ 𝐴 ) ) |
| 25 | 24 | ralbii | ⊢ ( ∀ 𝑔 ∈ dom ∫1 ∀ 𝑧 ( 𝑧 = ( ∫1 ‘ 𝑔 ) → ( 𝑔 ∘r ≤ 𝐹 → 𝑧 ≤ 𝐴 ) ) ↔ ∀ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 → ( ∫1 ‘ 𝑔 ) ≤ 𝐴 ) ) |
| 26 | 20 25 | bitr3i | ⊢ ( ∀ 𝑧 ∀ 𝑔 ∈ dom ∫1 ( 𝑧 = ( ∫1 ‘ 𝑔 ) → ( 𝑔 ∘r ≤ 𝐹 → 𝑧 ≤ 𝐴 ) ) ↔ ∀ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 → ( ∫1 ‘ 𝑔 ) ≤ 𝐴 ) ) |
| 27 | 19 26 | bitri | ⊢ ( ∀ 𝑧 ( ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑧 = ( ∫1 ‘ 𝑔 ) ) → 𝑧 ≤ 𝐴 ) ↔ ∀ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 → ( ∫1 ‘ 𝑔 ) ≤ 𝐴 ) ) |
| 28 | 12 27 | bitri | ⊢ ( ∀ 𝑧 ∈ { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } 𝑧 ≤ 𝐴 ↔ ∀ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 → ( ∫1 ‘ 𝑔 ) ≤ 𝐴 ) ) |
| 29 | 8 28 | bitrdi | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐴 ∈ ℝ* ) → ( sup ( { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } , ℝ* , < ) ≤ 𝐴 ↔ ∀ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 → ( ∫1 ‘ 𝑔 ) ≤ 𝐴 ) ) ) |
| 30 | 4 29 | bitrd | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐴 ∈ ℝ* ) → ( ( ∫2 ‘ 𝐹 ) ≤ 𝐴 ↔ ∀ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 → ( ∫1 ‘ 𝑔 ) ≤ 𝐴 ) ) ) |