This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the function F is strictly positive on a set of positive measure, then the integral of the function is positive. (Contributed by Mario Carneiro, 30-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itg2gt0.1 | ⊢ ( 𝜑 → 𝐴 ∈ dom vol ) | |
| itg2gt0.2 | ⊢ ( 𝜑 → 0 < ( vol ‘ 𝐴 ) ) | ||
| itg2gt0.3 | ⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ) | ||
| itg2gt0.4 | ⊢ ( 𝜑 → 𝐹 ∈ MblFn ) | ||
| itg2gt0.5 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 < ( 𝐹 ‘ 𝑥 ) ) | ||
| Assertion | itg2gt0 | ⊢ ( 𝜑 → 0 < ( ∫2 ‘ 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itg2gt0.1 | ⊢ ( 𝜑 → 𝐴 ∈ dom vol ) | |
| 2 | itg2gt0.2 | ⊢ ( 𝜑 → 0 < ( vol ‘ 𝐴 ) ) | |
| 3 | itg2gt0.3 | ⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ) | |
| 4 | itg2gt0.4 | ⊢ ( 𝜑 → 𝐹 ∈ MblFn ) | |
| 5 | itg2gt0.5 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 < ( 𝐹 ‘ 𝑥 ) ) | |
| 6 | iccssxr | ⊢ ( 0 [,] +∞ ) ⊆ ℝ* | |
| 7 | volf | ⊢ vol : dom vol ⟶ ( 0 [,] +∞ ) | |
| 8 | 7 | ffvelcdmi | ⊢ ( 𝐴 ∈ dom vol → ( vol ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) ) |
| 9 | 6 8 | sselid | ⊢ ( 𝐴 ∈ dom vol → ( vol ‘ 𝐴 ) ∈ ℝ* ) |
| 10 | 1 9 | syl | ⊢ ( 𝜑 → ( vol ‘ 𝐴 ) ∈ ℝ* ) |
| 11 | 10 | adantr | ⊢ ( ( 𝜑 ∧ ¬ 0 < ( ∫2 ‘ 𝐹 ) ) → ( vol ‘ 𝐴 ) ∈ ℝ* ) |
| 12 | 4 | elexd | ⊢ ( 𝜑 → 𝐹 ∈ V ) |
| 13 | cnvexg | ⊢ ( 𝐹 ∈ V → ◡ 𝐹 ∈ V ) | |
| 14 | 12 13 | syl | ⊢ ( 𝜑 → ◡ 𝐹 ∈ V ) |
| 15 | imaexg | ⊢ ( ◡ 𝐹 ∈ V → ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ∈ V ) | |
| 16 | 14 15 | syl | ⊢ ( 𝜑 → ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ∈ V ) |
| 17 | 16 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ∈ V ) |
| 18 | 17 | fmpttd | ⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) : ℕ ⟶ V ) |
| 19 | 18 | ffnd | ⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) Fn ℕ ) |
| 20 | fniunfv | ⊢ ( ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) Fn ℕ → ∪ 𝑘 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) = ∪ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) | |
| 21 | 19 20 | syl | ⊢ ( 𝜑 → ∪ 𝑘 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) = ∪ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) |
| 22 | rge0ssre | ⊢ ( 0 [,) +∞ ) ⊆ ℝ | |
| 23 | fss | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ∧ ( 0 [,) +∞ ) ⊆ ℝ ) → 𝐹 : ℝ ⟶ ℝ ) | |
| 24 | 3 22 23 | sylancl | ⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℝ ) |
| 25 | mbfima | ⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : ℝ ⟶ ℝ ) → ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ∈ dom vol ) | |
| 26 | 4 24 25 | syl2anc | ⊢ ( 𝜑 → ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ∈ dom vol ) |
| 27 | 26 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ∈ dom vol ) |
| 28 | 27 | fmpttd | ⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) : ℕ ⟶ dom vol ) |
| 29 | 28 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) ∈ dom vol ) |
| 30 | 29 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) ∈ dom vol ) |
| 31 | iunmbl | ⊢ ( ∀ 𝑘 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) ∈ dom vol → ∪ 𝑘 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) ∈ dom vol ) | |
| 32 | 30 31 | syl | ⊢ ( 𝜑 → ∪ 𝑘 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) ∈ dom vol ) |
| 33 | 21 32 | eqeltrrd | ⊢ ( 𝜑 → ∪ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ∈ dom vol ) |
| 34 | mblss | ⊢ ( ∪ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ∈ dom vol → ∪ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ⊆ ℝ ) | |
| 35 | 33 34 | syl | ⊢ ( 𝜑 → ∪ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ⊆ ℝ ) |
| 36 | ovolcl | ⊢ ( ∪ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ⊆ ℝ → ( vol* ‘ ∪ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) ∈ ℝ* ) | |
| 37 | 35 36 | syl | ⊢ ( 𝜑 → ( vol* ‘ ∪ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) ∈ ℝ* ) |
| 38 | 37 | adantr | ⊢ ( ( 𝜑 ∧ ¬ 0 < ( ∫2 ‘ 𝐹 ) ) → ( vol* ‘ ∪ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) ∈ ℝ* ) |
| 39 | 0xr | ⊢ 0 ∈ ℝ* | |
| 40 | 39 | a1i | ⊢ ( ( 𝜑 ∧ ¬ 0 < ( ∫2 ‘ 𝐹 ) ) → 0 ∈ ℝ* ) |
| 41 | mblvol | ⊢ ( 𝐴 ∈ dom vol → ( vol ‘ 𝐴 ) = ( vol* ‘ 𝐴 ) ) | |
| 42 | 1 41 | syl | ⊢ ( 𝜑 → ( vol ‘ 𝐴 ) = ( vol* ‘ 𝐴 ) ) |
| 43 | mblss | ⊢ ( 𝐴 ∈ dom vol → 𝐴 ⊆ ℝ ) | |
| 44 | 1 43 | syl | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
| 45 | 44 | sselda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ℝ ) |
| 46 | 3 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ) |
| 47 | elrege0 | ⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( 𝐹 ‘ 𝑥 ) ) ) | |
| 48 | 46 47 | sylib | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 49 | 48 | simpld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 50 | 45 49 | syldan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 51 | nnrecl | ⊢ ( ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ 0 < ( 𝐹 ‘ 𝑥 ) ) → ∃ 𝑘 ∈ ℕ ( 1 / 𝑘 ) < ( 𝐹 ‘ 𝑥 ) ) | |
| 52 | 50 5 51 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑘 ∈ ℕ ( 1 / 𝑘 ) < ( 𝐹 ‘ 𝑥 ) ) |
| 53 | 3 | ffnd | ⊢ ( 𝜑 → 𝐹 Fn ℝ ) |
| 54 | 53 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ ) → 𝐹 Fn ℝ ) |
| 55 | elpreima | ⊢ ( 𝐹 Fn ℝ → ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ↔ ( 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) | |
| 56 | 54 55 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ↔ ( 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) |
| 57 | 45 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ ) → 𝑥 ∈ ℝ ) |
| 58 | 57 | biantrurd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑥 ) ∈ ( ( 1 / 𝑘 ) (,) +∞ ) ↔ ( 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) |
| 59 | nnrecre | ⊢ ( 𝑘 ∈ ℕ → ( 1 / 𝑘 ) ∈ ℝ ) | |
| 60 | 59 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 1 / 𝑘 ) ∈ ℝ ) |
| 61 | 60 | rexrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 1 / 𝑘 ) ∈ ℝ* ) |
| 62 | 61 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( 1 / 𝑘 ) ∈ ℝ* ) |
| 63 | elioopnf | ⊢ ( ( 1 / 𝑘 ) ∈ ℝ* → ( ( 𝐹 ‘ 𝑥 ) ∈ ( ( 1 / 𝑘 ) (,) +∞ ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ ( 1 / 𝑘 ) < ( 𝐹 ‘ 𝑥 ) ) ) ) | |
| 64 | 62 63 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑥 ) ∈ ( ( 1 / 𝑘 ) (,) +∞ ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ ( 1 / 𝑘 ) < ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 65 | 56 58 64 | 3bitr2d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ ( 1 / 𝑘 ) < ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 66 | id | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ ) | |
| 67 | imaexg | ⊢ ( ◡ 𝐹 ∈ V → ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ∈ V ) | |
| 68 | 14 67 | syl | ⊢ ( 𝜑 → ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ∈ V ) |
| 69 | 68 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ∈ V ) |
| 70 | oveq2 | ⊢ ( 𝑛 = 𝑘 → ( 1 / 𝑛 ) = ( 1 / 𝑘 ) ) | |
| 71 | 70 | oveq1d | ⊢ ( 𝑛 = 𝑘 → ( ( 1 / 𝑛 ) (,) +∞ ) = ( ( 1 / 𝑘 ) (,) +∞ ) ) |
| 72 | 71 | imaeq2d | ⊢ ( 𝑛 = 𝑘 → ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) = ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) |
| 73 | eqid | ⊢ ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) | |
| 74 | 72 73 | fvmptg | ⊢ ( ( 𝑘 ∈ ℕ ∧ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ∈ V ) → ( ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) = ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) |
| 75 | 66 69 74 | syl2anr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) = ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) |
| 76 | 75 | eleq2d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑥 ∈ ( ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) ↔ 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) |
| 77 | 50 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 78 | 77 | biantrurd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( ( 1 / 𝑘 ) < ( 𝐹 ‘ 𝑥 ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ ( 1 / 𝑘 ) < ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 79 | 65 76 78 | 3bitr4rd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( ( 1 / 𝑘 ) < ( 𝐹 ‘ 𝑥 ) ↔ 𝑥 ∈ ( ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) ) ) |
| 80 | 79 | rexbidva | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ∃ 𝑘 ∈ ℕ ( 1 / 𝑘 ) < ( 𝐹 ‘ 𝑥 ) ↔ ∃ 𝑘 ∈ ℕ 𝑥 ∈ ( ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) ) ) |
| 81 | 52 80 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑘 ∈ ℕ 𝑥 ∈ ( ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) ) |
| 82 | 81 | ex | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → ∃ 𝑘 ∈ ℕ 𝑥 ∈ ( ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) ) ) |
| 83 | eluni2 | ⊢ ( 𝑥 ∈ ∪ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ↔ ∃ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) 𝑥 ∈ 𝑧 ) | |
| 84 | eleq2 | ⊢ ( 𝑧 = ( ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) → ( 𝑥 ∈ 𝑧 ↔ 𝑥 ∈ ( ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) ) ) | |
| 85 | 84 | rexrn | ⊢ ( ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) Fn ℕ → ( ∃ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) 𝑥 ∈ 𝑧 ↔ ∃ 𝑘 ∈ ℕ 𝑥 ∈ ( ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) ) ) |
| 86 | 19 85 | syl | ⊢ ( 𝜑 → ( ∃ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) 𝑥 ∈ 𝑧 ↔ ∃ 𝑘 ∈ ℕ 𝑥 ∈ ( ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) ) ) |
| 87 | 83 86 | bitrid | ⊢ ( 𝜑 → ( 𝑥 ∈ ∪ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ↔ ∃ 𝑘 ∈ ℕ 𝑥 ∈ ( ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) ) ) |
| 88 | 82 87 | sylibrd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ∪ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) ) |
| 89 | 88 | ssrdv | ⊢ ( 𝜑 → 𝐴 ⊆ ∪ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) |
| 90 | ovolss | ⊢ ( ( 𝐴 ⊆ ∪ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ∧ ∪ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ⊆ ℝ ) → ( vol* ‘ 𝐴 ) ≤ ( vol* ‘ ∪ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) ) | |
| 91 | 89 35 90 | syl2anc | ⊢ ( 𝜑 → ( vol* ‘ 𝐴 ) ≤ ( vol* ‘ ∪ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) ) |
| 92 | 42 91 | eqbrtrd | ⊢ ( 𝜑 → ( vol ‘ 𝐴 ) ≤ ( vol* ‘ ∪ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) ) |
| 93 | 92 | adantr | ⊢ ( ( 𝜑 ∧ ¬ 0 < ( ∫2 ‘ 𝐹 ) ) → ( vol ‘ 𝐴 ) ≤ ( vol* ‘ ∪ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) ) |
| 94 | mblvol | ⊢ ( ∪ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ∈ dom vol → ( vol ‘ ∪ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) = ( vol* ‘ ∪ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) ) | |
| 95 | 33 94 | syl | ⊢ ( 𝜑 → ( vol ‘ ∪ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) = ( vol* ‘ ∪ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) ) |
| 96 | peano2nn | ⊢ ( 𝑘 ∈ ℕ → ( 𝑘 + 1 ) ∈ ℕ ) | |
| 97 | 96 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑘 + 1 ) ∈ ℕ ) |
| 98 | nnrecre | ⊢ ( ( 𝑘 + 1 ) ∈ ℕ → ( 1 / ( 𝑘 + 1 ) ) ∈ ℝ ) | |
| 99 | 97 98 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 1 / ( 𝑘 + 1 ) ) ∈ ℝ ) |
| 100 | 99 | rexrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 1 / ( 𝑘 + 1 ) ) ∈ ℝ* ) |
| 101 | nnre | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℝ ) | |
| 102 | 101 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℝ ) |
| 103 | 102 | lep1d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑘 ≤ ( 𝑘 + 1 ) ) |
| 104 | nngt0 | ⊢ ( 𝑘 ∈ ℕ → 0 < 𝑘 ) | |
| 105 | 104 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 0 < 𝑘 ) |
| 106 | 97 | nnred | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑘 + 1 ) ∈ ℝ ) |
| 107 | 97 | nngt0d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 0 < ( 𝑘 + 1 ) ) |
| 108 | lerec | ⊢ ( ( ( 𝑘 ∈ ℝ ∧ 0 < 𝑘 ) ∧ ( ( 𝑘 + 1 ) ∈ ℝ ∧ 0 < ( 𝑘 + 1 ) ) ) → ( 𝑘 ≤ ( 𝑘 + 1 ) ↔ ( 1 / ( 𝑘 + 1 ) ) ≤ ( 1 / 𝑘 ) ) ) | |
| 109 | 102 105 106 107 108 | syl22anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑘 ≤ ( 𝑘 + 1 ) ↔ ( 1 / ( 𝑘 + 1 ) ) ≤ ( 1 / 𝑘 ) ) ) |
| 110 | 103 109 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 1 / ( 𝑘 + 1 ) ) ≤ ( 1 / 𝑘 ) ) |
| 111 | iooss1 | ⊢ ( ( ( 1 / ( 𝑘 + 1 ) ) ∈ ℝ* ∧ ( 1 / ( 𝑘 + 1 ) ) ≤ ( 1 / 𝑘 ) ) → ( ( 1 / 𝑘 ) (,) +∞ ) ⊆ ( ( 1 / ( 𝑘 + 1 ) ) (,) +∞ ) ) | |
| 112 | 100 110 111 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 1 / 𝑘 ) (,) +∞ ) ⊆ ( ( 1 / ( 𝑘 + 1 ) ) (,) +∞ ) ) |
| 113 | imass2 | ⊢ ( ( ( 1 / 𝑘 ) (,) +∞ ) ⊆ ( ( 1 / ( 𝑘 + 1 ) ) (,) +∞ ) → ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ⊆ ( ◡ 𝐹 “ ( ( 1 / ( 𝑘 + 1 ) ) (,) +∞ ) ) ) | |
| 114 | 112 113 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ⊆ ( ◡ 𝐹 “ ( ( 1 / ( 𝑘 + 1 ) ) (,) +∞ ) ) ) |
| 115 | 66 68 74 | syl2anr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) = ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) |
| 116 | imaexg | ⊢ ( ◡ 𝐹 ∈ V → ( ◡ 𝐹 “ ( ( 1 / ( 𝑘 + 1 ) ) (,) +∞ ) ) ∈ V ) | |
| 117 | 14 116 | syl | ⊢ ( 𝜑 → ( ◡ 𝐹 “ ( ( 1 / ( 𝑘 + 1 ) ) (,) +∞ ) ) ∈ V ) |
| 118 | oveq2 | ⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( 1 / 𝑛 ) = ( 1 / ( 𝑘 + 1 ) ) ) | |
| 119 | 118 | oveq1d | ⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( ( 1 / 𝑛 ) (,) +∞ ) = ( ( 1 / ( 𝑘 + 1 ) ) (,) +∞ ) ) |
| 120 | 119 | imaeq2d | ⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) = ( ◡ 𝐹 “ ( ( 1 / ( 𝑘 + 1 ) ) (,) +∞ ) ) ) |
| 121 | 120 73 | fvmptg | ⊢ ( ( ( 𝑘 + 1 ) ∈ ℕ ∧ ( ◡ 𝐹 “ ( ( 1 / ( 𝑘 + 1 ) ) (,) +∞ ) ) ∈ V ) → ( ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ ( 𝑘 + 1 ) ) = ( ◡ 𝐹 “ ( ( 1 / ( 𝑘 + 1 ) ) (,) +∞ ) ) ) |
| 122 | 96 117 121 | syl2anr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ ( 𝑘 + 1 ) ) = ( ◡ 𝐹 “ ( ( 1 / ( 𝑘 + 1 ) ) (,) +∞ ) ) ) |
| 123 | 114 115 122 | 3sstr4d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) ⊆ ( ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ ( 𝑘 + 1 ) ) ) |
| 124 | 123 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) ⊆ ( ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ ( 𝑘 + 1 ) ) ) |
| 125 | volsup | ⊢ ( ( ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) : ℕ ⟶ dom vol ∧ ∀ 𝑘 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) ⊆ ( ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ ( 𝑘 + 1 ) ) ) → ( vol ‘ ∪ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) = sup ( ( vol “ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) , ℝ* , < ) ) | |
| 126 | 28 124 125 | syl2anc | ⊢ ( 𝜑 → ( vol ‘ ∪ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) = sup ( ( vol “ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) , ℝ* , < ) ) |
| 127 | 95 126 | eqtr3d | ⊢ ( 𝜑 → ( vol* ‘ ∪ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) = sup ( ( vol “ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) , ℝ* , < ) ) |
| 128 | 127 | adantr | ⊢ ( ( 𝜑 ∧ ¬ 0 < ( ∫2 ‘ 𝐹 ) ) → ( vol* ‘ ∪ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) = sup ( ( vol “ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) , ℝ* , < ) ) |
| 129 | 68 | adantr | ⊢ ( ( 𝜑 ∧ ¬ 0 < ( ∫2 ‘ 𝐹 ) ) → ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ∈ V ) |
| 130 | 66 129 74 | syl2anr | ⊢ ( ( ( 𝜑 ∧ ¬ 0 < ( ∫2 ‘ 𝐹 ) ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) = ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) |
| 131 | 130 | fveq2d | ⊢ ( ( ( 𝜑 ∧ ¬ 0 < ( ∫2 ‘ 𝐹 ) ) ∧ 𝑘 ∈ ℕ ) → ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) ) = ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) |
| 132 | 39 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) → 0 ∈ ℝ* ) |
| 133 | nnrecgt0 | ⊢ ( 𝑘 ∈ ℕ → 0 < ( 1 / 𝑘 ) ) | |
| 134 | 133 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 0 < ( 1 / 𝑘 ) ) |
| 135 | 0re | ⊢ 0 ∈ ℝ | |
| 136 | ltle | ⊢ ( ( 0 ∈ ℝ ∧ ( 1 / 𝑘 ) ∈ ℝ ) → ( 0 < ( 1 / 𝑘 ) → 0 ≤ ( 1 / 𝑘 ) ) ) | |
| 137 | 135 60 136 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 0 < ( 1 / 𝑘 ) → 0 ≤ ( 1 / 𝑘 ) ) ) |
| 138 | 134 137 | mpd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 0 ≤ ( 1 / 𝑘 ) ) |
| 139 | elxrge0 | ⊢ ( ( 1 / 𝑘 ) ∈ ( 0 [,] +∞ ) ↔ ( ( 1 / 𝑘 ) ∈ ℝ* ∧ 0 ≤ ( 1 / 𝑘 ) ) ) | |
| 140 | 61 138 139 | sylanbrc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 1 / 𝑘 ) ∈ ( 0 [,] +∞ ) ) |
| 141 | 0e0iccpnf | ⊢ 0 ∈ ( 0 [,] +∞ ) | |
| 142 | ifcl | ⊢ ( ( ( 1 / 𝑘 ) ∈ ( 0 [,] +∞ ) ∧ 0 ∈ ( 0 [,] +∞ ) ) → if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ∈ ( 0 [,] +∞ ) ) | |
| 143 | 140 141 142 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ∈ ( 0 [,] +∞ ) ) |
| 144 | 143 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ∈ ( 0 [,] +∞ ) ) |
| 145 | 144 | fmpttd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 146 | 145 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 147 | itg2cl | ⊢ ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ∈ ℝ* ) | |
| 148 | 146 147 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ∈ ℝ* ) |
| 149 | icossicc | ⊢ ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) | |
| 150 | fss | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ∧ ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) ) → 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ) | |
| 151 | 3 149 150 | sylancl | ⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 152 | itg2cl | ⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ( ∫2 ‘ 𝐹 ) ∈ ℝ* ) | |
| 153 | 151 152 | syl | ⊢ ( 𝜑 → ( ∫2 ‘ 𝐹 ) ∈ ℝ* ) |
| 154 | 153 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) → ( ∫2 ‘ 𝐹 ) ∈ ℝ* ) |
| 155 | 0nrp | ⊢ ¬ 0 ∈ ℝ+ | |
| 156 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) ∧ 0 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ) → 0 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ) | |
| 157 | 115 29 | eqeltrrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ∈ dom vol ) |
| 158 | 157 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) → ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ∈ dom vol ) |
| 159 | 158 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) ∧ 0 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ) → ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ∈ dom vol ) |
| 160 | 156 135 | eqeltrrdi | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) ∧ 0 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ∈ ℝ ) |
| 161 | 60 134 | elrpd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 1 / 𝑘 ) ∈ ℝ+ ) |
| 162 | 161 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) → ( 1 / 𝑘 ) ∈ ℝ+ ) |
| 163 | 162 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) ∧ 0 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ) → ( 1 / 𝑘 ) ∈ ℝ+ ) |
| 164 | itg2const2 | ⊢ ( ( ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ∈ dom vol ∧ ( 1 / 𝑘 ) ∈ ℝ+ ) → ( ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ∈ ℝ ↔ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ∈ ℝ ) ) | |
| 165 | 159 163 164 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) ∧ 0 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ) → ( ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ∈ ℝ ↔ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ∈ ℝ ) ) |
| 166 | 160 165 | mpbird | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) ∧ 0 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ) → ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ∈ ℝ ) |
| 167 | elrege0 | ⊢ ( ( 1 / 𝑘 ) ∈ ( 0 [,) +∞ ) ↔ ( ( 1 / 𝑘 ) ∈ ℝ ∧ 0 ≤ ( 1 / 𝑘 ) ) ) | |
| 168 | 60 138 167 | sylanbrc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 1 / 𝑘 ) ∈ ( 0 [,) +∞ ) ) |
| 169 | 168 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) → ( 1 / 𝑘 ) ∈ ( 0 [,) +∞ ) ) |
| 170 | 169 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) ∧ 0 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ) → ( 1 / 𝑘 ) ∈ ( 0 [,) +∞ ) ) |
| 171 | itg2const | ⊢ ( ( ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ∈ dom vol ∧ ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ∈ ℝ ∧ ( 1 / 𝑘 ) ∈ ( 0 [,) +∞ ) ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) = ( ( 1 / 𝑘 ) · ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) | |
| 172 | 159 166 170 171 | syl3anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) ∧ 0 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) = ( ( 1 / 𝑘 ) · ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) |
| 173 | 156 172 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) ∧ 0 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ) → 0 = ( ( 1 / 𝑘 ) · ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) |
| 174 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) ∧ 0 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ) → 0 < ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) | |
| 175 | 166 174 | elrpd | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) ∧ 0 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ) → ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ∈ ℝ+ ) |
| 176 | 163 175 | rpmulcld | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) ∧ 0 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ) → ( ( 1 / 𝑘 ) · ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ∈ ℝ+ ) |
| 177 | 173 176 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) ∧ 0 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ) → 0 ∈ ℝ+ ) |
| 178 | 177 | ex | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) → ( 0 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) → 0 ∈ ℝ+ ) ) |
| 179 | 155 178 | mtoi | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) → ¬ 0 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ) |
| 180 | itg2ge0 | ⊢ ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) → 0 ≤ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ) | |
| 181 | 146 180 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) → 0 ≤ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ) |
| 182 | xrleloe | ⊢ ( ( 0 ∈ ℝ* ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ∈ ℝ* ) → ( 0 ≤ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ↔ ( 0 < ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ∨ 0 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ) ) ) | |
| 183 | 39 148 182 | sylancr | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) → ( 0 ≤ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ↔ ( 0 < ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ∨ 0 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ) ) ) |
| 184 | 181 183 | mpbid | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) → ( 0 < ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ∨ 0 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ) ) |
| 185 | 184 | ord | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) → ( ¬ 0 < ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) → 0 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ) ) |
| 186 | 179 185 | mt3d | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) → 0 < ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ) |
| 187 | 151 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) → 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 188 | 60 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) → ( 1 / 𝑘 ) ∈ ℝ ) |
| 189 | 53 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝐹 Fn ℝ ) |
| 190 | 189 55 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ↔ ( 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) |
| 191 | 190 | biimpa | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) → ( 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) |
| 192 | 191 | simpld | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) → 𝑥 ∈ ℝ ) |
| 193 | 49 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 194 | 192 193 | syldan | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 195 | 61 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) → ( 1 / 𝑘 ) ∈ ℝ* ) |
| 196 | 191 | simprd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ( ( 1 / 𝑘 ) (,) +∞ ) ) |
| 197 | simpr | ⊢ ( ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ ( 1 / 𝑘 ) < ( 𝐹 ‘ 𝑥 ) ) → ( 1 / 𝑘 ) < ( 𝐹 ‘ 𝑥 ) ) | |
| 198 | 63 197 | biimtrdi | ⊢ ( ( 1 / 𝑘 ) ∈ ℝ* → ( ( 𝐹 ‘ 𝑥 ) ∈ ( ( 1 / 𝑘 ) (,) +∞ ) → ( 1 / 𝑘 ) < ( 𝐹 ‘ 𝑥 ) ) ) |
| 199 | 195 196 198 | sylc | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) → ( 1 / 𝑘 ) < ( 𝐹 ‘ 𝑥 ) ) |
| 200 | 188 194 199 | ltled | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) → ( 1 / 𝑘 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 201 | 48 | simprd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 0 ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 202 | 201 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 0 ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 203 | 192 202 | syldan | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) → 0 ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 204 | breq1 | ⊢ ( ( 1 / 𝑘 ) = if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) → ( ( 1 / 𝑘 ) ≤ ( 𝐹 ‘ 𝑥 ) ↔ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) | |
| 205 | breq1 | ⊢ ( 0 = if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) → ( 0 ≤ ( 𝐹 ‘ 𝑥 ) ↔ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) | |
| 206 | 204 205 | ifboth | ⊢ ( ( ( 1 / 𝑘 ) ≤ ( 𝐹 ‘ 𝑥 ) ∧ 0 ≤ ( 𝐹 ‘ 𝑥 ) ) → if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 207 | 200 203 206 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) → if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 208 | 207 | adantlr | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) → if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 209 | iffalse | ⊢ ( ¬ 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) → if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) = 0 ) | |
| 210 | 209 | adantl | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ¬ 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) → if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) = 0 ) |
| 211 | 202 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ¬ 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) → 0 ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 212 | 210 211 | eqbrtrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ¬ 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) → if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 213 | 208 212 | pm2.61dan | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 214 | 213 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ∀ 𝑥 ∈ ℝ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 215 | 214 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) → ∀ 𝑥 ∈ ℝ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 216 | reex | ⊢ ℝ ∈ V | |
| 217 | 216 | a1i | ⊢ ( 𝜑 → ℝ ∈ V ) |
| 218 | ovex | ⊢ ( 1 / 𝑘 ) ∈ V | |
| 219 | c0ex | ⊢ 0 ∈ V | |
| 220 | 218 219 | ifex | ⊢ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ∈ V |
| 221 | 220 | a1i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ∈ V ) |
| 222 | fvexd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ V ) | |
| 223 | eqidd | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) | |
| 224 | 3 | feqmptd | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ ℝ ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 225 | 217 221 222 223 224 | ofrfval2 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ∘r ≤ 𝐹 ↔ ∀ 𝑥 ∈ ℝ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 226 | 225 | biimpar | ⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ≤ ( 𝐹 ‘ 𝑥 ) ) → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ∘r ≤ 𝐹 ) |
| 227 | 215 226 | syldan | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ∘r ≤ 𝐹 ) |
| 228 | itg2le | ⊢ ( ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ∘r ≤ 𝐹 ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ≤ ( ∫2 ‘ 𝐹 ) ) | |
| 229 | 146 187 227 228 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) , ( 1 / 𝑘 ) , 0 ) ) ) ≤ ( ∫2 ‘ 𝐹 ) ) |
| 230 | 132 148 154 186 229 | xrltletrd | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 0 < ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) → 0 < ( ∫2 ‘ 𝐹 ) ) |
| 231 | 230 | expr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 0 < ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) → 0 < ( ∫2 ‘ 𝐹 ) ) ) |
| 232 | 231 | con3d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ¬ 0 < ( ∫2 ‘ 𝐹 ) → ¬ 0 < ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) |
| 233 | 7 | ffvelcdmi | ⊢ ( ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ∈ dom vol → ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ∈ ( 0 [,] +∞ ) ) |
| 234 | 6 233 | sselid | ⊢ ( ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ∈ dom vol → ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ∈ ℝ* ) |
| 235 | 157 234 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ∈ ℝ* ) |
| 236 | xrlenlt | ⊢ ( ( ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ∈ ℝ* ∧ 0 ∈ ℝ* ) → ( ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ≤ 0 ↔ ¬ 0 < ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) | |
| 237 | 235 39 236 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ≤ 0 ↔ ¬ 0 < ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ) ) |
| 238 | 232 237 | sylibrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ¬ 0 < ( ∫2 ‘ 𝐹 ) → ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ≤ 0 ) ) |
| 239 | 238 | imp | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ¬ 0 < ( ∫2 ‘ 𝐹 ) ) → ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ≤ 0 ) |
| 240 | 239 | an32s | ⊢ ( ( ( 𝜑 ∧ ¬ 0 < ( ∫2 ‘ 𝐹 ) ) ∧ 𝑘 ∈ ℕ ) → ( vol ‘ ( ◡ 𝐹 “ ( ( 1 / 𝑘 ) (,) +∞ ) ) ) ≤ 0 ) |
| 241 | 131 240 | eqbrtrd | ⊢ ( ( ( 𝜑 ∧ ¬ 0 < ( ∫2 ‘ 𝐹 ) ) ∧ 𝑘 ∈ ℕ ) → ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) ) ≤ 0 ) |
| 242 | 241 | ralrimiva | ⊢ ( ( 𝜑 ∧ ¬ 0 < ( ∫2 ‘ 𝐹 ) ) → ∀ 𝑘 ∈ ℕ ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) ) ≤ 0 ) |
| 243 | ffn | ⊢ ( ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) : ℕ ⟶ V → ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) Fn ℕ ) | |
| 244 | fveq2 | ⊢ ( 𝑧 = ( ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) → ( vol ‘ 𝑧 ) = ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) ) ) | |
| 245 | 244 | breq1d | ⊢ ( 𝑧 = ( ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) → ( ( vol ‘ 𝑧 ) ≤ 0 ↔ ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) ) ≤ 0 ) ) |
| 246 | 245 | ralrn | ⊢ ( ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) Fn ℕ → ( ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ( vol ‘ 𝑧 ) ≤ 0 ↔ ∀ 𝑘 ∈ ℕ ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) ) ≤ 0 ) ) |
| 247 | 18 243 246 | 3syl | ⊢ ( 𝜑 → ( ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ( vol ‘ 𝑧 ) ≤ 0 ↔ ∀ 𝑘 ∈ ℕ ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) ) ≤ 0 ) ) |
| 248 | 247 | adantr | ⊢ ( ( 𝜑 ∧ ¬ 0 < ( ∫2 ‘ 𝐹 ) ) → ( ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ( vol ‘ 𝑧 ) ≤ 0 ↔ ∀ 𝑘 ∈ ℕ ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ‘ 𝑘 ) ) ≤ 0 ) ) |
| 249 | 242 248 | mpbird | ⊢ ( ( 𝜑 ∧ ¬ 0 < ( ∫2 ‘ 𝐹 ) ) → ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ( vol ‘ 𝑧 ) ≤ 0 ) |
| 250 | ffn | ⊢ ( vol : dom vol ⟶ ( 0 [,] +∞ ) → vol Fn dom vol ) | |
| 251 | 7 250 | ax-mp | ⊢ vol Fn dom vol |
| 252 | 28 | frnd | ⊢ ( 𝜑 → ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ⊆ dom vol ) |
| 253 | 252 | adantr | ⊢ ( ( 𝜑 ∧ ¬ 0 < ( ∫2 ‘ 𝐹 ) ) → ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ⊆ dom vol ) |
| 254 | breq1 | ⊢ ( 𝑥 = ( vol ‘ 𝑧 ) → ( 𝑥 ≤ 0 ↔ ( vol ‘ 𝑧 ) ≤ 0 ) ) | |
| 255 | 254 | ralima | ⊢ ( ( vol Fn dom vol ∧ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ⊆ dom vol ) → ( ∀ 𝑥 ∈ ( vol “ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) 𝑥 ≤ 0 ↔ ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ( vol ‘ 𝑧 ) ≤ 0 ) ) |
| 256 | 251 253 255 | sylancr | ⊢ ( ( 𝜑 ∧ ¬ 0 < ( ∫2 ‘ 𝐹 ) ) → ( ∀ 𝑥 ∈ ( vol “ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) 𝑥 ≤ 0 ↔ ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ( vol ‘ 𝑧 ) ≤ 0 ) ) |
| 257 | 249 256 | mpbird | ⊢ ( ( 𝜑 ∧ ¬ 0 < ( ∫2 ‘ 𝐹 ) ) → ∀ 𝑥 ∈ ( vol “ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) 𝑥 ≤ 0 ) |
| 258 | imassrn | ⊢ ( vol “ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) ⊆ ran vol | |
| 259 | frn | ⊢ ( vol : dom vol ⟶ ( 0 [,] +∞ ) → ran vol ⊆ ( 0 [,] +∞ ) ) | |
| 260 | 7 259 | ax-mp | ⊢ ran vol ⊆ ( 0 [,] +∞ ) |
| 261 | 260 6 | sstri | ⊢ ran vol ⊆ ℝ* |
| 262 | 258 261 | sstri | ⊢ ( vol “ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) ⊆ ℝ* |
| 263 | supxrleub | ⊢ ( ( ( vol “ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) ⊆ ℝ* ∧ 0 ∈ ℝ* ) → ( sup ( ( vol “ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) , ℝ* , < ) ≤ 0 ↔ ∀ 𝑥 ∈ ( vol “ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) 𝑥 ≤ 0 ) ) | |
| 264 | 262 39 263 | mp2an | ⊢ ( sup ( ( vol “ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) , ℝ* , < ) ≤ 0 ↔ ∀ 𝑥 ∈ ( vol “ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) 𝑥 ≤ 0 ) |
| 265 | 257 264 | sylibr | ⊢ ( ( 𝜑 ∧ ¬ 0 < ( ∫2 ‘ 𝐹 ) ) → sup ( ( vol “ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) , ℝ* , < ) ≤ 0 ) |
| 266 | 128 265 | eqbrtrd | ⊢ ( ( 𝜑 ∧ ¬ 0 < ( ∫2 ‘ 𝐹 ) ) → ( vol* ‘ ∪ ran ( 𝑛 ∈ ℕ ↦ ( ◡ 𝐹 “ ( ( 1 / 𝑛 ) (,) +∞ ) ) ) ) ≤ 0 ) |
| 267 | 11 38 40 93 266 | xrletrd | ⊢ ( ( 𝜑 ∧ ¬ 0 < ( ∫2 ‘ 𝐹 ) ) → ( vol ‘ 𝐴 ) ≤ 0 ) |
| 268 | 267 | ex | ⊢ ( 𝜑 → ( ¬ 0 < ( ∫2 ‘ 𝐹 ) → ( vol ‘ 𝐴 ) ≤ 0 ) ) |
| 269 | xrlenlt | ⊢ ( ( ( vol ‘ 𝐴 ) ∈ ℝ* ∧ 0 ∈ ℝ* ) → ( ( vol ‘ 𝐴 ) ≤ 0 ↔ ¬ 0 < ( vol ‘ 𝐴 ) ) ) | |
| 270 | 10 39 269 | sylancl | ⊢ ( 𝜑 → ( ( vol ‘ 𝐴 ) ≤ 0 ↔ ¬ 0 < ( vol ‘ 𝐴 ) ) ) |
| 271 | 268 270 | sylibd | ⊢ ( 𝜑 → ( ¬ 0 < ( ∫2 ‘ 𝐹 ) → ¬ 0 < ( vol ‘ 𝐴 ) ) ) |
| 272 | 2 271 | mt4d | ⊢ ( 𝜑 → 0 < ( ∫2 ‘ 𝐹 ) ) |