This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: "Less than or equal to" expressed in terms of "less than", for extended reals. (Contributed by NM, 14-Oct-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xrlenlt | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br | ⊢ ( 𝐴 ≤ 𝐵 ↔ 〈 𝐴 , 𝐵 〉 ∈ ≤ ) | |
| 2 | opelxpi | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → 〈 𝐴 , 𝐵 〉 ∈ ( ℝ* × ℝ* ) ) | |
| 3 | df-le | ⊢ ≤ = ( ( ℝ* × ℝ* ) ∖ ◡ < ) | |
| 4 | 3 | eleq2i | ⊢ ( 〈 𝐴 , 𝐵 〉 ∈ ≤ ↔ 〈 𝐴 , 𝐵 〉 ∈ ( ( ℝ* × ℝ* ) ∖ ◡ < ) ) |
| 5 | eldif | ⊢ ( 〈 𝐴 , 𝐵 〉 ∈ ( ( ℝ* × ℝ* ) ∖ ◡ < ) ↔ ( 〈 𝐴 , 𝐵 〉 ∈ ( ℝ* × ℝ* ) ∧ ¬ 〈 𝐴 , 𝐵 〉 ∈ ◡ < ) ) | |
| 6 | 4 5 | bitri | ⊢ ( 〈 𝐴 , 𝐵 〉 ∈ ≤ ↔ ( 〈 𝐴 , 𝐵 〉 ∈ ( ℝ* × ℝ* ) ∧ ¬ 〈 𝐴 , 𝐵 〉 ∈ ◡ < ) ) |
| 7 | 6 | baib | ⊢ ( 〈 𝐴 , 𝐵 〉 ∈ ( ℝ* × ℝ* ) → ( 〈 𝐴 , 𝐵 〉 ∈ ≤ ↔ ¬ 〈 𝐴 , 𝐵 〉 ∈ ◡ < ) ) |
| 8 | 2 7 | syl | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 〈 𝐴 , 𝐵 〉 ∈ ≤ ↔ ¬ 〈 𝐴 , 𝐵 〉 ∈ ◡ < ) ) |
| 9 | 1 8 | bitrid | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 ≤ 𝐵 ↔ ¬ 〈 𝐴 , 𝐵 〉 ∈ ◡ < ) ) |
| 10 | df-br | ⊢ ( 𝐵 < 𝐴 ↔ 〈 𝐵 , 𝐴 〉 ∈ < ) | |
| 11 | opelcnvg | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 〈 𝐴 , 𝐵 〉 ∈ ◡ < ↔ 〈 𝐵 , 𝐴 〉 ∈ < ) ) | |
| 12 | 10 11 | bitr4id | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐵 < 𝐴 ↔ 〈 𝐴 , 𝐵 〉 ∈ ◡ < ) ) |
| 13 | 12 | notbid | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ¬ 𝐵 < 𝐴 ↔ ¬ 〈 𝐴 , 𝐵 〉 ∈ ◡ < ) ) |
| 14 | 9 13 | bitr4d | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴 ) ) |