This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 3bitr4d.1 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | |
| 3bitr4d.2 | ⊢ ( 𝜑 → ( 𝜃 ↔ 𝜓 ) ) | ||
| 3bitr4d.3 | ⊢ ( 𝜑 → ( 𝜏 ↔ 𝜒 ) ) | ||
| Assertion | 3bitr4rd | ⊢ ( 𝜑 → ( 𝜏 ↔ 𝜃 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr4d.1 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | |
| 2 | 3bitr4d.2 | ⊢ ( 𝜑 → ( 𝜃 ↔ 𝜓 ) ) | |
| 3 | 3bitr4d.3 | ⊢ ( 𝜑 → ( 𝜏 ↔ 𝜒 ) ) | |
| 4 | 3 1 | bitr4d | ⊢ ( 𝜑 → ( 𝜏 ↔ 𝜓 ) ) |
| 5 | 4 2 | bitr4d | ⊢ ( 𝜑 → ( 𝜏 ↔ 𝜃 ) ) |