This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The volume of the limit of an increasing sequence of measurable sets is the limit of the volumes. (Contributed by Mario Carneiro, 14-Aug-2014) (Revised by Mario Carneiro, 11-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | volsup | ⊢ ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) → ( vol ‘ ∪ ran 𝐹 ) = sup ( ( vol “ ran 𝐹 ) , ℝ* , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffvelcdm | ⊢ ( ( 𝐹 : ℕ ⟶ dom vol ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) ∈ dom vol ) | |
| 2 | 1 | ad2ant2r | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ) → ( 𝐹 ‘ 𝑘 ) ∈ dom vol ) |
| 3 | fzofi | ⊢ ( 1 ..^ 𝑘 ) ∈ Fin | |
| 4 | simpll | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ) → 𝐹 : ℕ ⟶ dom vol ) | |
| 5 | elfzouz | ⊢ ( 𝑚 ∈ ( 1 ..^ 𝑘 ) → 𝑚 ∈ ( ℤ≥ ‘ 1 ) ) | |
| 6 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 7 | 5 6 | eleqtrrdi | ⊢ ( 𝑚 ∈ ( 1 ..^ 𝑘 ) → 𝑚 ∈ ℕ ) |
| 8 | ffvelcdm | ⊢ ( ( 𝐹 : ℕ ⟶ dom vol ∧ 𝑚 ∈ ℕ ) → ( 𝐹 ‘ 𝑚 ) ∈ dom vol ) | |
| 9 | 4 7 8 | syl2an | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ) ∧ 𝑚 ∈ ( 1 ..^ 𝑘 ) ) → ( 𝐹 ‘ 𝑚 ) ∈ dom vol ) |
| 10 | 9 | ralrimiva | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ) → ∀ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ∈ dom vol ) |
| 11 | finiunmbl | ⊢ ( ( ( 1 ..^ 𝑘 ) ∈ Fin ∧ ∀ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ∈ dom vol ) → ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ∈ dom vol ) | |
| 12 | 3 10 11 | sylancr | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ) → ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ∈ dom vol ) |
| 13 | difmbl | ⊢ ( ( ( 𝐹 ‘ 𝑘 ) ∈ dom vol ∧ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ∈ dom vol ) → ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ∈ dom vol ) | |
| 14 | 2 12 13 | syl2anc | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ) → ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ∈ dom vol ) |
| 15 | mblvol | ⊢ ( ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ∈ dom vol → ( vol ‘ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) = ( vol* ‘ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) | |
| 16 | 14 15 | syl | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ) → ( vol ‘ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) = ( vol* ‘ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) |
| 17 | difssd | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ) → ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ⊆ ( 𝐹 ‘ 𝑘 ) ) | |
| 18 | mblss | ⊢ ( ( 𝐹 ‘ 𝑘 ) ∈ dom vol → ( 𝐹 ‘ 𝑘 ) ⊆ ℝ ) | |
| 19 | 2 18 | syl | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ) → ( 𝐹 ‘ 𝑘 ) ⊆ ℝ ) |
| 20 | mblvol | ⊢ ( ( 𝐹 ‘ 𝑘 ) ∈ dom vol → ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) = ( vol* ‘ ( 𝐹 ‘ 𝑘 ) ) ) | |
| 21 | 2 20 | syl | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ) → ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) = ( vol* ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 22 | simprr | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ) → ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) | |
| 23 | 21 22 | eqeltrrd | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ) → ( vol* ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) |
| 24 | ovolsscl | ⊢ ( ( ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ⊆ ( 𝐹 ‘ 𝑘 ) ∧ ( 𝐹 ‘ 𝑘 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) → ( vol* ‘ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ∈ ℝ ) | |
| 25 | 17 19 23 24 | syl3anc | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ) → ( vol* ‘ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ∈ ℝ ) |
| 26 | 16 25 | eqeltrd | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ) → ( vol ‘ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ∈ ℝ ) |
| 27 | 14 26 | jca | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ) → ( ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ∈ dom vol ∧ ( vol ‘ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ∈ ℝ ) ) |
| 28 | 27 | expr | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ 𝑘 ∈ ℕ ) → ( ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ → ( ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ∈ dom vol ∧ ( vol ‘ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ∈ ℝ ) ) ) |
| 29 | 28 | ralimdva | ⊢ ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) → ( ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ → ∀ 𝑘 ∈ ℕ ( ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ∈ dom vol ∧ ( vol ‘ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ∈ ℝ ) ) ) |
| 30 | 29 | imp | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) → ∀ 𝑘 ∈ ℕ ( ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ∈ dom vol ∧ ( vol ‘ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ∈ ℝ ) ) |
| 31 | fveq2 | ⊢ ( 𝑘 = 𝑚 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑚 ) ) | |
| 32 | 31 | iundisj2 | ⊢ Disj 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) |
| 33 | eqid | ⊢ seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) = seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) | |
| 34 | eqid | ⊢ ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) = ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) | |
| 35 | 33 34 | voliun | ⊢ ( ( ∀ 𝑘 ∈ ℕ ( ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ∈ dom vol ∧ ( vol ‘ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ∈ ℝ ) ∧ Disj 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) → ( vol ‘ ∪ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) = sup ( ran seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) , ℝ* , < ) ) |
| 36 | 30 32 35 | sylancl | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) → ( vol ‘ ∪ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) = sup ( ran seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) , ℝ* , < ) ) |
| 37 | 31 | iundisj | ⊢ ∪ 𝑘 ∈ ℕ ( 𝐹 ‘ 𝑘 ) = ∪ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) |
| 38 | ffn | ⊢ ( 𝐹 : ℕ ⟶ dom vol → 𝐹 Fn ℕ ) | |
| 39 | 38 | ad2antrr | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) → 𝐹 Fn ℕ ) |
| 40 | fniunfv | ⊢ ( 𝐹 Fn ℕ → ∪ 𝑘 ∈ ℕ ( 𝐹 ‘ 𝑘 ) = ∪ ran 𝐹 ) | |
| 41 | 39 40 | syl | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) → ∪ 𝑘 ∈ ℕ ( 𝐹 ‘ 𝑘 ) = ∪ ran 𝐹 ) |
| 42 | 37 41 | eqtr3id | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) → ∪ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) = ∪ ran 𝐹 ) |
| 43 | 42 | fveq2d | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) → ( vol ‘ ∪ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) = ( vol ‘ ∪ ran 𝐹 ) ) |
| 44 | 1z | ⊢ 1 ∈ ℤ | |
| 45 | seqfn | ⊢ ( 1 ∈ ℤ → seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) Fn ( ℤ≥ ‘ 1 ) ) | |
| 46 | 44 45 | ax-mp | ⊢ seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) Fn ( ℤ≥ ‘ 1 ) |
| 47 | 6 | fneq2i | ⊢ ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) Fn ℕ ↔ seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) Fn ( ℤ≥ ‘ 1 ) ) |
| 48 | 46 47 | mpbir | ⊢ seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) Fn ℕ |
| 49 | 48 | a1i | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) → seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) Fn ℕ ) |
| 50 | volf | ⊢ vol : dom vol ⟶ ( 0 [,] +∞ ) | |
| 51 | simpll | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) → 𝐹 : ℕ ⟶ dom vol ) | |
| 52 | fco | ⊢ ( ( vol : dom vol ⟶ ( 0 [,] +∞ ) ∧ 𝐹 : ℕ ⟶ dom vol ) → ( vol ∘ 𝐹 ) : ℕ ⟶ ( 0 [,] +∞ ) ) | |
| 53 | 50 51 52 | sylancr | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) → ( vol ∘ 𝐹 ) : ℕ ⟶ ( 0 [,] +∞ ) ) |
| 54 | 53 | ffnd | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) → ( vol ∘ 𝐹 ) Fn ℕ ) |
| 55 | fveq2 | ⊢ ( 𝑥 = 1 → ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) ‘ 𝑥 ) = ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) ‘ 1 ) ) | |
| 56 | 2fveq3 | ⊢ ( 𝑥 = 1 → ( vol ‘ ( 𝐹 ‘ 𝑥 ) ) = ( vol ‘ ( 𝐹 ‘ 1 ) ) ) | |
| 57 | 55 56 | eqeq12d | ⊢ ( 𝑥 = 1 → ( ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) ‘ 𝑥 ) = ( vol ‘ ( 𝐹 ‘ 𝑥 ) ) ↔ ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) ‘ 1 ) = ( vol ‘ ( 𝐹 ‘ 1 ) ) ) ) |
| 58 | 57 | imbi2d | ⊢ ( 𝑥 = 1 → ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) → ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) ‘ 𝑥 ) = ( vol ‘ ( 𝐹 ‘ 𝑥 ) ) ) ↔ ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) → ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) ‘ 1 ) = ( vol ‘ ( 𝐹 ‘ 1 ) ) ) ) ) |
| 59 | fveq2 | ⊢ ( 𝑥 = 𝑗 → ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) ‘ 𝑥 ) = ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) ‘ 𝑗 ) ) | |
| 60 | 2fveq3 | ⊢ ( 𝑥 = 𝑗 → ( vol ‘ ( 𝐹 ‘ 𝑥 ) ) = ( vol ‘ ( 𝐹 ‘ 𝑗 ) ) ) | |
| 61 | 59 60 | eqeq12d | ⊢ ( 𝑥 = 𝑗 → ( ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) ‘ 𝑥 ) = ( vol ‘ ( 𝐹 ‘ 𝑥 ) ) ↔ ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) ‘ 𝑗 ) = ( vol ‘ ( 𝐹 ‘ 𝑗 ) ) ) ) |
| 62 | 61 | imbi2d | ⊢ ( 𝑥 = 𝑗 → ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) → ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) ‘ 𝑥 ) = ( vol ‘ ( 𝐹 ‘ 𝑥 ) ) ) ↔ ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) → ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) ‘ 𝑗 ) = ( vol ‘ ( 𝐹 ‘ 𝑗 ) ) ) ) ) |
| 63 | fveq2 | ⊢ ( 𝑥 = ( 𝑗 + 1 ) → ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) ‘ 𝑥 ) = ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) ‘ ( 𝑗 + 1 ) ) ) | |
| 64 | 2fveq3 | ⊢ ( 𝑥 = ( 𝑗 + 1 ) → ( vol ‘ ( 𝐹 ‘ 𝑥 ) ) = ( vol ‘ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) ) | |
| 65 | 63 64 | eqeq12d | ⊢ ( 𝑥 = ( 𝑗 + 1 ) → ( ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) ‘ 𝑥 ) = ( vol ‘ ( 𝐹 ‘ 𝑥 ) ) ↔ ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) ‘ ( 𝑗 + 1 ) ) = ( vol ‘ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) ) ) |
| 66 | 65 | imbi2d | ⊢ ( 𝑥 = ( 𝑗 + 1 ) → ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) → ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) ‘ 𝑥 ) = ( vol ‘ ( 𝐹 ‘ 𝑥 ) ) ) ↔ ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) → ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) ‘ ( 𝑗 + 1 ) ) = ( vol ‘ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) ) ) ) |
| 67 | seq1 | ⊢ ( 1 ∈ ℤ → ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) ‘ 1 ) = ( ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ‘ 1 ) ) | |
| 68 | 44 67 | ax-mp | ⊢ ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) ‘ 1 ) = ( ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ‘ 1 ) |
| 69 | 1nn | ⊢ 1 ∈ ℕ | |
| 70 | oveq2 | ⊢ ( 𝑘 = 1 → ( 1 ..^ 𝑘 ) = ( 1 ..^ 1 ) ) | |
| 71 | fzo0 | ⊢ ( 1 ..^ 1 ) = ∅ | |
| 72 | 70 71 | eqtrdi | ⊢ ( 𝑘 = 1 → ( 1 ..^ 𝑘 ) = ∅ ) |
| 73 | 72 | iuneq1d | ⊢ ( 𝑘 = 1 → ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) = ∪ 𝑚 ∈ ∅ ( 𝐹 ‘ 𝑚 ) ) |
| 74 | 0iun | ⊢ ∪ 𝑚 ∈ ∅ ( 𝐹 ‘ 𝑚 ) = ∅ | |
| 75 | 73 74 | eqtrdi | ⊢ ( 𝑘 = 1 → ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) = ∅ ) |
| 76 | 75 | difeq2d | ⊢ ( 𝑘 = 1 → ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) = ( ( 𝐹 ‘ 𝑘 ) ∖ ∅ ) ) |
| 77 | dif0 | ⊢ ( ( 𝐹 ‘ 𝑘 ) ∖ ∅ ) = ( 𝐹 ‘ 𝑘 ) | |
| 78 | 76 77 | eqtrdi | ⊢ ( 𝑘 = 1 → ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) = ( 𝐹 ‘ 𝑘 ) ) |
| 79 | fveq2 | ⊢ ( 𝑘 = 1 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 1 ) ) | |
| 80 | 78 79 | eqtrd | ⊢ ( 𝑘 = 1 → ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) = ( 𝐹 ‘ 1 ) ) |
| 81 | 80 | fveq2d | ⊢ ( 𝑘 = 1 → ( vol ‘ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) = ( vol ‘ ( 𝐹 ‘ 1 ) ) ) |
| 82 | fvex | ⊢ ( vol ‘ ( 𝐹 ‘ 1 ) ) ∈ V | |
| 83 | 81 34 82 | fvmpt | ⊢ ( 1 ∈ ℕ → ( ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ‘ 1 ) = ( vol ‘ ( 𝐹 ‘ 1 ) ) ) |
| 84 | 69 83 | ax-mp | ⊢ ( ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ‘ 1 ) = ( vol ‘ ( 𝐹 ‘ 1 ) ) |
| 85 | 68 84 | eqtri | ⊢ ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) ‘ 1 ) = ( vol ‘ ( 𝐹 ‘ 1 ) ) |
| 86 | 85 | a1i | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) → ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) ‘ 1 ) = ( vol ‘ ( 𝐹 ‘ 1 ) ) ) |
| 87 | oveq1 | ⊢ ( ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) ‘ 𝑗 ) = ( vol ‘ ( 𝐹 ‘ 𝑗 ) ) → ( ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) ‘ 𝑗 ) + ( ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ‘ ( 𝑗 + 1 ) ) ) = ( ( vol ‘ ( 𝐹 ‘ 𝑗 ) ) + ( ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ‘ ( 𝑗 + 1 ) ) ) ) | |
| 88 | seqp1 | ⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 1 ) → ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) ‘ ( 𝑗 + 1 ) ) = ( ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) ‘ 𝑗 ) + ( ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ‘ ( 𝑗 + 1 ) ) ) ) | |
| 89 | 88 6 | eleq2s | ⊢ ( 𝑗 ∈ ℕ → ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) ‘ ( 𝑗 + 1 ) ) = ( ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) ‘ 𝑗 ) + ( ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ‘ ( 𝑗 + 1 ) ) ) ) |
| 90 | 89 | adantl | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) ‘ ( 𝑗 + 1 ) ) = ( ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) ‘ 𝑗 ) + ( ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ‘ ( 𝑗 + 1 ) ) ) ) |
| 91 | undif2 | ⊢ ( ( 𝐹 ‘ 𝑗 ) ∪ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ∖ ( 𝐹 ‘ 𝑗 ) ) ) = ( ( 𝐹 ‘ 𝑗 ) ∪ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) | |
| 92 | fveq2 | ⊢ ( 𝑛 = 𝑗 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑗 ) ) | |
| 93 | fvoveq1 | ⊢ ( 𝑛 = 𝑗 → ( 𝐹 ‘ ( 𝑛 + 1 ) ) = ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) | |
| 94 | 92 93 | sseq12d | ⊢ ( 𝑛 = 𝑗 → ( ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ↔ ( 𝐹 ‘ 𝑗 ) ⊆ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) ) |
| 95 | simpllr | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) | |
| 96 | simpr | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → 𝑗 ∈ ℕ ) | |
| 97 | 94 95 96 | rspcdva | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( 𝐹 ‘ 𝑗 ) ⊆ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) |
| 98 | ssequn1 | ⊢ ( ( 𝐹 ‘ 𝑗 ) ⊆ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ↔ ( ( 𝐹 ‘ 𝑗 ) ∪ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) = ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) | |
| 99 | 97 98 | sylib | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑗 ) ∪ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) = ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) |
| 100 | 91 99 | eqtr2id | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( 𝐹 ‘ ( 𝑗 + 1 ) ) = ( ( 𝐹 ‘ 𝑗 ) ∪ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ∖ ( 𝐹 ‘ 𝑗 ) ) ) ) |
| 101 | 100 | fveq2d | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( vol ‘ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) = ( vol ‘ ( ( 𝐹 ‘ 𝑗 ) ∪ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ∖ ( 𝐹 ‘ 𝑗 ) ) ) ) ) |
| 102 | simplll | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → 𝐹 : ℕ ⟶ dom vol ) | |
| 103 | 102 96 | ffvelcdmd | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( 𝐹 ‘ 𝑗 ) ∈ dom vol ) |
| 104 | peano2nn | ⊢ ( 𝑗 ∈ ℕ → ( 𝑗 + 1 ) ∈ ℕ ) | |
| 105 | 104 | adantl | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( 𝑗 + 1 ) ∈ ℕ ) |
| 106 | 102 105 | ffvelcdmd | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( 𝐹 ‘ ( 𝑗 + 1 ) ) ∈ dom vol ) |
| 107 | difmbl | ⊢ ( ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ∈ dom vol ∧ ( 𝐹 ‘ 𝑗 ) ∈ dom vol ) → ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ∖ ( 𝐹 ‘ 𝑗 ) ) ∈ dom vol ) | |
| 108 | 106 103 107 | syl2anc | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ∖ ( 𝐹 ‘ 𝑗 ) ) ∈ dom vol ) |
| 109 | disjdif | ⊢ ( ( 𝐹 ‘ 𝑗 ) ∩ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ∖ ( 𝐹 ‘ 𝑗 ) ) ) = ∅ | |
| 110 | 109 | a1i | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑗 ) ∩ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ∖ ( 𝐹 ‘ 𝑗 ) ) ) = ∅ ) |
| 111 | 2fveq3 | ⊢ ( 𝑘 = 𝑗 → ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) = ( vol ‘ ( 𝐹 ‘ 𝑗 ) ) ) | |
| 112 | 111 | eleq1d | ⊢ ( 𝑘 = 𝑗 → ( ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ↔ ( vol ‘ ( 𝐹 ‘ 𝑗 ) ) ∈ ℝ ) ) |
| 113 | simplr | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) | |
| 114 | 112 113 96 | rspcdva | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( vol ‘ ( 𝐹 ‘ 𝑗 ) ) ∈ ℝ ) |
| 115 | mblvol | ⊢ ( ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ∖ ( 𝐹 ‘ 𝑗 ) ) ∈ dom vol → ( vol ‘ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ∖ ( 𝐹 ‘ 𝑗 ) ) ) = ( vol* ‘ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ∖ ( 𝐹 ‘ 𝑗 ) ) ) ) | |
| 116 | 108 115 | syl | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( vol ‘ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ∖ ( 𝐹 ‘ 𝑗 ) ) ) = ( vol* ‘ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ∖ ( 𝐹 ‘ 𝑗 ) ) ) ) |
| 117 | difssd | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ∖ ( 𝐹 ‘ 𝑗 ) ) ⊆ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) | |
| 118 | mblss | ⊢ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ∈ dom vol → ( 𝐹 ‘ ( 𝑗 + 1 ) ) ⊆ ℝ ) | |
| 119 | 106 118 | syl | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( 𝐹 ‘ ( 𝑗 + 1 ) ) ⊆ ℝ ) |
| 120 | mblvol | ⊢ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ∈ dom vol → ( vol ‘ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) = ( vol* ‘ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) ) | |
| 121 | 106 120 | syl | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( vol ‘ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) = ( vol* ‘ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) ) |
| 122 | 2fveq3 | ⊢ ( 𝑘 = ( 𝑗 + 1 ) → ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) = ( vol ‘ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) ) | |
| 123 | 122 | eleq1d | ⊢ ( 𝑘 = ( 𝑗 + 1 ) → ( ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ↔ ( vol ‘ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) ∈ ℝ ) ) |
| 124 | 123 113 105 | rspcdva | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( vol ‘ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) ∈ ℝ ) |
| 125 | 121 124 | eqeltrrd | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( vol* ‘ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) ∈ ℝ ) |
| 126 | ovolsscl | ⊢ ( ( ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ∖ ( 𝐹 ‘ 𝑗 ) ) ⊆ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ∧ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ⊆ ℝ ∧ ( vol* ‘ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) ∈ ℝ ) → ( vol* ‘ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ∖ ( 𝐹 ‘ 𝑗 ) ) ) ∈ ℝ ) | |
| 127 | 117 119 125 126 | syl3anc | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( vol* ‘ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ∖ ( 𝐹 ‘ 𝑗 ) ) ) ∈ ℝ ) |
| 128 | 116 127 | eqeltrd | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( vol ‘ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ∖ ( 𝐹 ‘ 𝑗 ) ) ) ∈ ℝ ) |
| 129 | volun | ⊢ ( ( ( ( 𝐹 ‘ 𝑗 ) ∈ dom vol ∧ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ∖ ( 𝐹 ‘ 𝑗 ) ) ∈ dom vol ∧ ( ( 𝐹 ‘ 𝑗 ) ∩ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ∖ ( 𝐹 ‘ 𝑗 ) ) ) = ∅ ) ∧ ( ( vol ‘ ( 𝐹 ‘ 𝑗 ) ) ∈ ℝ ∧ ( vol ‘ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ∖ ( 𝐹 ‘ 𝑗 ) ) ) ∈ ℝ ) ) → ( vol ‘ ( ( 𝐹 ‘ 𝑗 ) ∪ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ∖ ( 𝐹 ‘ 𝑗 ) ) ) ) = ( ( vol ‘ ( 𝐹 ‘ 𝑗 ) ) + ( vol ‘ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ∖ ( 𝐹 ‘ 𝑗 ) ) ) ) ) | |
| 130 | 103 108 110 114 128 129 | syl32anc | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( vol ‘ ( ( 𝐹 ‘ 𝑗 ) ∪ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ∖ ( 𝐹 ‘ 𝑗 ) ) ) ) = ( ( vol ‘ ( 𝐹 ‘ 𝑗 ) ) + ( vol ‘ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ∖ ( 𝐹 ‘ 𝑗 ) ) ) ) ) |
| 131 | 95 | adantr | ⊢ ( ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑚 ∈ ( 1 ... 𝑗 ) ) → ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) |
| 132 | elfznn | ⊢ ( 𝑚 ∈ ( 1 ... 𝑗 ) → 𝑚 ∈ ℕ ) | |
| 133 | 132 | adantl | ⊢ ( ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑚 ∈ ( 1 ... 𝑗 ) ) → 𝑚 ∈ ℕ ) |
| 134 | elfzuz3 | ⊢ ( 𝑚 ∈ ( 1 ... 𝑗 ) → 𝑗 ∈ ( ℤ≥ ‘ 𝑚 ) ) | |
| 135 | 134 | adantl | ⊢ ( ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑚 ∈ ( 1 ... 𝑗 ) ) → 𝑗 ∈ ( ℤ≥ ‘ 𝑚 ) ) |
| 136 | volsuplem | ⊢ ( ( ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑚 ) ) ) → ( 𝐹 ‘ 𝑚 ) ⊆ ( 𝐹 ‘ 𝑗 ) ) | |
| 137 | 131 133 135 136 | syl12anc | ⊢ ( ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑚 ∈ ( 1 ... 𝑗 ) ) → ( 𝐹 ‘ 𝑚 ) ⊆ ( 𝐹 ‘ 𝑗 ) ) |
| 138 | 137 | ralrimiva | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ∀ 𝑚 ∈ ( 1 ... 𝑗 ) ( 𝐹 ‘ 𝑚 ) ⊆ ( 𝐹 ‘ 𝑗 ) ) |
| 139 | iunss | ⊢ ( ∪ 𝑚 ∈ ( 1 ... 𝑗 ) ( 𝐹 ‘ 𝑚 ) ⊆ ( 𝐹 ‘ 𝑗 ) ↔ ∀ 𝑚 ∈ ( 1 ... 𝑗 ) ( 𝐹 ‘ 𝑚 ) ⊆ ( 𝐹 ‘ 𝑗 ) ) | |
| 140 | 138 139 | sylibr | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ∪ 𝑚 ∈ ( 1 ... 𝑗 ) ( 𝐹 ‘ 𝑚 ) ⊆ ( 𝐹 ‘ 𝑗 ) ) |
| 141 | 96 6 | eleqtrdi | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → 𝑗 ∈ ( ℤ≥ ‘ 1 ) ) |
| 142 | eluzfz2 | ⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 1 ) → 𝑗 ∈ ( 1 ... 𝑗 ) ) | |
| 143 | 141 142 | syl | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → 𝑗 ∈ ( 1 ... 𝑗 ) ) |
| 144 | fveq2 | ⊢ ( 𝑚 = 𝑗 → ( 𝐹 ‘ 𝑚 ) = ( 𝐹 ‘ 𝑗 ) ) | |
| 145 | 144 | ssiun2s | ⊢ ( 𝑗 ∈ ( 1 ... 𝑗 ) → ( 𝐹 ‘ 𝑗 ) ⊆ ∪ 𝑚 ∈ ( 1 ... 𝑗 ) ( 𝐹 ‘ 𝑚 ) ) |
| 146 | 143 145 | syl | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( 𝐹 ‘ 𝑗 ) ⊆ ∪ 𝑚 ∈ ( 1 ... 𝑗 ) ( 𝐹 ‘ 𝑚 ) ) |
| 147 | 140 146 | eqssd | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ∪ 𝑚 ∈ ( 1 ... 𝑗 ) ( 𝐹 ‘ 𝑚 ) = ( 𝐹 ‘ 𝑗 ) ) |
| 148 | 96 | nnzd | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → 𝑗 ∈ ℤ ) |
| 149 | fzval3 | ⊢ ( 𝑗 ∈ ℤ → ( 1 ... 𝑗 ) = ( 1 ..^ ( 𝑗 + 1 ) ) ) | |
| 150 | 148 149 | syl | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( 1 ... 𝑗 ) = ( 1 ..^ ( 𝑗 + 1 ) ) ) |
| 151 | 150 | iuneq1d | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ∪ 𝑚 ∈ ( 1 ... 𝑗 ) ( 𝐹 ‘ 𝑚 ) = ∪ 𝑚 ∈ ( 1 ..^ ( 𝑗 + 1 ) ) ( 𝐹 ‘ 𝑚 ) ) |
| 152 | 147 151 | eqtr3d | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( 𝐹 ‘ 𝑗 ) = ∪ 𝑚 ∈ ( 1 ..^ ( 𝑗 + 1 ) ) ( 𝐹 ‘ 𝑚 ) ) |
| 153 | 152 | difeq2d | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ∖ ( 𝐹 ‘ 𝑗 ) ) = ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ∖ ∪ 𝑚 ∈ ( 1 ..^ ( 𝑗 + 1 ) ) ( 𝐹 ‘ 𝑚 ) ) ) |
| 154 | 153 | fveq2d | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( vol ‘ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ∖ ( 𝐹 ‘ 𝑗 ) ) ) = ( vol ‘ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ∖ ∪ 𝑚 ∈ ( 1 ..^ ( 𝑗 + 1 ) ) ( 𝐹 ‘ 𝑚 ) ) ) ) |
| 155 | fveq2 | ⊢ ( 𝑘 = ( 𝑗 + 1 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) | |
| 156 | oveq2 | ⊢ ( 𝑘 = ( 𝑗 + 1 ) → ( 1 ..^ 𝑘 ) = ( 1 ..^ ( 𝑗 + 1 ) ) ) | |
| 157 | 156 | iuneq1d | ⊢ ( 𝑘 = ( 𝑗 + 1 ) → ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) = ∪ 𝑚 ∈ ( 1 ..^ ( 𝑗 + 1 ) ) ( 𝐹 ‘ 𝑚 ) ) |
| 158 | 155 157 | difeq12d | ⊢ ( 𝑘 = ( 𝑗 + 1 ) → ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) = ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ∖ ∪ 𝑚 ∈ ( 1 ..^ ( 𝑗 + 1 ) ) ( 𝐹 ‘ 𝑚 ) ) ) |
| 159 | 158 | fveq2d | ⊢ ( 𝑘 = ( 𝑗 + 1 ) → ( vol ‘ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) = ( vol ‘ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ∖ ∪ 𝑚 ∈ ( 1 ..^ ( 𝑗 + 1 ) ) ( 𝐹 ‘ 𝑚 ) ) ) ) |
| 160 | fvex | ⊢ ( vol ‘ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ∖ ∪ 𝑚 ∈ ( 1 ..^ ( 𝑗 + 1 ) ) ( 𝐹 ‘ 𝑚 ) ) ) ∈ V | |
| 161 | 159 34 160 | fvmpt | ⊢ ( ( 𝑗 + 1 ) ∈ ℕ → ( ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ‘ ( 𝑗 + 1 ) ) = ( vol ‘ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ∖ ∪ 𝑚 ∈ ( 1 ..^ ( 𝑗 + 1 ) ) ( 𝐹 ‘ 𝑚 ) ) ) ) |
| 162 | 105 161 | syl | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ‘ ( 𝑗 + 1 ) ) = ( vol ‘ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ∖ ∪ 𝑚 ∈ ( 1 ..^ ( 𝑗 + 1 ) ) ( 𝐹 ‘ 𝑚 ) ) ) ) |
| 163 | 154 162 | eqtr4d | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( vol ‘ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ∖ ( 𝐹 ‘ 𝑗 ) ) ) = ( ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ‘ ( 𝑗 + 1 ) ) ) |
| 164 | 163 | oveq2d | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( ( vol ‘ ( 𝐹 ‘ 𝑗 ) ) + ( vol ‘ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ∖ ( 𝐹 ‘ 𝑗 ) ) ) ) = ( ( vol ‘ ( 𝐹 ‘ 𝑗 ) ) + ( ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ‘ ( 𝑗 + 1 ) ) ) ) |
| 165 | 101 130 164 | 3eqtrd | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( vol ‘ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) = ( ( vol ‘ ( 𝐹 ‘ 𝑗 ) ) + ( ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ‘ ( 𝑗 + 1 ) ) ) ) |
| 166 | 90 165 | eqeq12d | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) ‘ ( 𝑗 + 1 ) ) = ( vol ‘ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) ↔ ( ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) ‘ 𝑗 ) + ( ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ‘ ( 𝑗 + 1 ) ) ) = ( ( vol ‘ ( 𝐹 ‘ 𝑗 ) ) + ( ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ‘ ( 𝑗 + 1 ) ) ) ) ) |
| 167 | 87 166 | imbitrrid | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) ‘ 𝑗 ) = ( vol ‘ ( 𝐹 ‘ 𝑗 ) ) → ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) ‘ ( 𝑗 + 1 ) ) = ( vol ‘ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) ) ) |
| 168 | 167 | expcom | ⊢ ( 𝑗 ∈ ℕ → ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) → ( ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) ‘ 𝑗 ) = ( vol ‘ ( 𝐹 ‘ 𝑗 ) ) → ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) ‘ ( 𝑗 + 1 ) ) = ( vol ‘ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) ) ) ) |
| 169 | 168 | a2d | ⊢ ( 𝑗 ∈ ℕ → ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) → ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) ‘ 𝑗 ) = ( vol ‘ ( 𝐹 ‘ 𝑗 ) ) ) → ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) → ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) ‘ ( 𝑗 + 1 ) ) = ( vol ‘ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) ) ) ) |
| 170 | 58 62 66 62 86 169 | nnind | ⊢ ( 𝑗 ∈ ℕ → ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) → ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) ‘ 𝑗 ) = ( vol ‘ ( 𝐹 ‘ 𝑗 ) ) ) ) |
| 171 | 170 | impcom | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) ‘ 𝑗 ) = ( vol ‘ ( 𝐹 ‘ 𝑗 ) ) ) |
| 172 | fvco3 | ⊢ ( ( 𝐹 : ℕ ⟶ dom vol ∧ 𝑗 ∈ ℕ ) → ( ( vol ∘ 𝐹 ) ‘ 𝑗 ) = ( vol ‘ ( 𝐹 ‘ 𝑗 ) ) ) | |
| 173 | 51 172 | sylan | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( ( vol ∘ 𝐹 ) ‘ 𝑗 ) = ( vol ‘ ( 𝐹 ‘ 𝑗 ) ) ) |
| 174 | 171 173 | eqtr4d | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) ‘ 𝑗 ) = ( ( vol ∘ 𝐹 ) ‘ 𝑗 ) ) |
| 175 | 49 54 174 | eqfnfvd | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) → seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) = ( vol ∘ 𝐹 ) ) |
| 176 | 175 | rneqd | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) → ran seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) = ran ( vol ∘ 𝐹 ) ) |
| 177 | rnco2 | ⊢ ran ( vol ∘ 𝐹 ) = ( vol “ ran 𝐹 ) | |
| 178 | 176 177 | eqtrdi | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) → ran seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) = ( vol “ ran 𝐹 ) ) |
| 179 | 178 | supeq1d | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) → sup ( ran seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) , ℝ* , < ) = sup ( ( vol “ ran 𝐹 ) , ℝ* , < ) ) |
| 180 | 36 43 179 | 3eqtr3d | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) → ( vol ‘ ∪ ran 𝐹 ) = sup ( ( vol “ ran 𝐹 ) , ℝ* , < ) ) |
| 181 | 180 | ex | ⊢ ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) → ( ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ → ( vol ‘ ∪ ran 𝐹 ) = sup ( ( vol “ ran 𝐹 ) , ℝ* , < ) ) ) |
| 182 | rexnal | ⊢ ( ∃ 𝑘 ∈ ℕ ¬ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ↔ ¬ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) | |
| 183 | fniunfv | ⊢ ( 𝐹 Fn ℕ → ∪ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) = ∪ ran 𝐹 ) | |
| 184 | 38 183 | syl | ⊢ ( 𝐹 : ℕ ⟶ dom vol → ∪ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) = ∪ ran 𝐹 ) |
| 185 | ffvelcdm | ⊢ ( ( 𝐹 : ℕ ⟶ dom vol ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) ∈ dom vol ) | |
| 186 | 185 | ralrimiva | ⊢ ( 𝐹 : ℕ ⟶ dom vol → ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ∈ dom vol ) |
| 187 | iunmbl | ⊢ ( ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ∈ dom vol → ∪ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ∈ dom vol ) | |
| 188 | 186 187 | syl | ⊢ ( 𝐹 : ℕ ⟶ dom vol → ∪ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ∈ dom vol ) |
| 189 | 184 188 | eqeltrrd | ⊢ ( 𝐹 : ℕ ⟶ dom vol → ∪ ran 𝐹 ∈ dom vol ) |
| 190 | 189 | ad2antrr | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ¬ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ) → ∪ ran 𝐹 ∈ dom vol ) |
| 191 | mblss | ⊢ ( ∪ ran 𝐹 ∈ dom vol → ∪ ran 𝐹 ⊆ ℝ ) | |
| 192 | 190 191 | syl | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ¬ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ) → ∪ ran 𝐹 ⊆ ℝ ) |
| 193 | ovolcl | ⊢ ( ∪ ran 𝐹 ⊆ ℝ → ( vol* ‘ ∪ ran 𝐹 ) ∈ ℝ* ) | |
| 194 | 192 193 | syl | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ¬ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ) → ( vol* ‘ ∪ ran 𝐹 ) ∈ ℝ* ) |
| 195 | pnfge | ⊢ ( ( vol* ‘ ∪ ran 𝐹 ) ∈ ℝ* → ( vol* ‘ ∪ ran 𝐹 ) ≤ +∞ ) | |
| 196 | 194 195 | syl | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ¬ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ) → ( vol* ‘ ∪ ran 𝐹 ) ≤ +∞ ) |
| 197 | simprr | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ¬ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ) → ¬ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) | |
| 198 | 1 | ad2ant2r | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ¬ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ) → ( 𝐹 ‘ 𝑘 ) ∈ dom vol ) |
| 199 | 198 18 | syl | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ¬ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ) → ( 𝐹 ‘ 𝑘 ) ⊆ ℝ ) |
| 200 | ovolcl | ⊢ ( ( 𝐹 ‘ 𝑘 ) ⊆ ℝ → ( vol* ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ* ) | |
| 201 | 199 200 | syl | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ¬ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ) → ( vol* ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ* ) |
| 202 | xrrebnd | ⊢ ( ( vol* ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ* → ( ( vol* ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ↔ ( -∞ < ( vol* ‘ ( 𝐹 ‘ 𝑘 ) ) ∧ ( vol* ‘ ( 𝐹 ‘ 𝑘 ) ) < +∞ ) ) ) | |
| 203 | 201 202 | syl | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ¬ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ) → ( ( vol* ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ↔ ( -∞ < ( vol* ‘ ( 𝐹 ‘ 𝑘 ) ) ∧ ( vol* ‘ ( 𝐹 ‘ 𝑘 ) ) < +∞ ) ) ) |
| 204 | 198 20 | syl | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ¬ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ) → ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) = ( vol* ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 205 | 204 | eleq1d | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ¬ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ) → ( ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ↔ ( vol* ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ) |
| 206 | ovolge0 | ⊢ ( ( 𝐹 ‘ 𝑘 ) ⊆ ℝ → 0 ≤ ( vol* ‘ ( 𝐹 ‘ 𝑘 ) ) ) | |
| 207 | mnflt0 | ⊢ -∞ < 0 | |
| 208 | mnfxr | ⊢ -∞ ∈ ℝ* | |
| 209 | 0xr | ⊢ 0 ∈ ℝ* | |
| 210 | xrltletr | ⊢ ( ( -∞ ∈ ℝ* ∧ 0 ∈ ℝ* ∧ ( vol* ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ* ) → ( ( -∞ < 0 ∧ 0 ≤ ( vol* ‘ ( 𝐹 ‘ 𝑘 ) ) ) → -∞ < ( vol* ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) | |
| 211 | 208 209 210 | mp3an12 | ⊢ ( ( vol* ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ* → ( ( -∞ < 0 ∧ 0 ≤ ( vol* ‘ ( 𝐹 ‘ 𝑘 ) ) ) → -∞ < ( vol* ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 212 | 207 211 | mpani | ⊢ ( ( vol* ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ* → ( 0 ≤ ( vol* ‘ ( 𝐹 ‘ 𝑘 ) ) → -∞ < ( vol* ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 213 | 200 206 212 | sylc | ⊢ ( ( 𝐹 ‘ 𝑘 ) ⊆ ℝ → -∞ < ( vol* ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 214 | 199 213 | syl | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ¬ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ) → -∞ < ( vol* ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 215 | 214 | biantrurd | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ¬ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ) → ( ( vol* ‘ ( 𝐹 ‘ 𝑘 ) ) < +∞ ↔ ( -∞ < ( vol* ‘ ( 𝐹 ‘ 𝑘 ) ) ∧ ( vol* ‘ ( 𝐹 ‘ 𝑘 ) ) < +∞ ) ) ) |
| 216 | 203 205 215 | 3bitr4d | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ¬ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ) → ( ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ↔ ( vol* ‘ ( 𝐹 ‘ 𝑘 ) ) < +∞ ) ) |
| 217 | 197 216 | mtbid | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ¬ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ) → ¬ ( vol* ‘ ( 𝐹 ‘ 𝑘 ) ) < +∞ ) |
| 218 | nltpnft | ⊢ ( ( vol* ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ* → ( ( vol* ‘ ( 𝐹 ‘ 𝑘 ) ) = +∞ ↔ ¬ ( vol* ‘ ( 𝐹 ‘ 𝑘 ) ) < +∞ ) ) | |
| 219 | 201 218 | syl | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ¬ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ) → ( ( vol* ‘ ( 𝐹 ‘ 𝑘 ) ) = +∞ ↔ ¬ ( vol* ‘ ( 𝐹 ‘ 𝑘 ) ) < +∞ ) ) |
| 220 | 217 219 | mpbird | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ¬ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ) → ( vol* ‘ ( 𝐹 ‘ 𝑘 ) ) = +∞ ) |
| 221 | 38 | ad2antrr | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ¬ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ) → 𝐹 Fn ℕ ) |
| 222 | simprl | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ¬ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ) → 𝑘 ∈ ℕ ) | |
| 223 | fnfvelrn | ⊢ ( ( 𝐹 Fn ℕ ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) ∈ ran 𝐹 ) | |
| 224 | 221 222 223 | syl2anc | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ¬ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ran 𝐹 ) |
| 225 | elssuni | ⊢ ( ( 𝐹 ‘ 𝑘 ) ∈ ran 𝐹 → ( 𝐹 ‘ 𝑘 ) ⊆ ∪ ran 𝐹 ) | |
| 226 | 224 225 | syl | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ¬ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ) → ( 𝐹 ‘ 𝑘 ) ⊆ ∪ ran 𝐹 ) |
| 227 | ovolss | ⊢ ( ( ( 𝐹 ‘ 𝑘 ) ⊆ ∪ ran 𝐹 ∧ ∪ ran 𝐹 ⊆ ℝ ) → ( vol* ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ ( vol* ‘ ∪ ran 𝐹 ) ) | |
| 228 | 226 192 227 | syl2anc | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ¬ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ) → ( vol* ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ ( vol* ‘ ∪ ran 𝐹 ) ) |
| 229 | 220 228 | eqbrtrrd | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ¬ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ) → +∞ ≤ ( vol* ‘ ∪ ran 𝐹 ) ) |
| 230 | pnfxr | ⊢ +∞ ∈ ℝ* | |
| 231 | xrletri3 | ⊢ ( ( ( vol* ‘ ∪ ran 𝐹 ) ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( ( vol* ‘ ∪ ran 𝐹 ) = +∞ ↔ ( ( vol* ‘ ∪ ran 𝐹 ) ≤ +∞ ∧ +∞ ≤ ( vol* ‘ ∪ ran 𝐹 ) ) ) ) | |
| 232 | 194 230 231 | sylancl | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ¬ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ) → ( ( vol* ‘ ∪ ran 𝐹 ) = +∞ ↔ ( ( vol* ‘ ∪ ran 𝐹 ) ≤ +∞ ∧ +∞ ≤ ( vol* ‘ ∪ ran 𝐹 ) ) ) ) |
| 233 | 196 229 232 | mpbir2and | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ¬ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ) → ( vol* ‘ ∪ ran 𝐹 ) = +∞ ) |
| 234 | mblvol | ⊢ ( ∪ ran 𝐹 ∈ dom vol → ( vol ‘ ∪ ran 𝐹 ) = ( vol* ‘ ∪ ran 𝐹 ) ) | |
| 235 | 190 234 | syl | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ¬ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ) → ( vol ‘ ∪ ran 𝐹 ) = ( vol* ‘ ∪ ran 𝐹 ) ) |
| 236 | imassrn | ⊢ ( vol “ ran 𝐹 ) ⊆ ran vol | |
| 237 | frn | ⊢ ( vol : dom vol ⟶ ( 0 [,] +∞ ) → ran vol ⊆ ( 0 [,] +∞ ) ) | |
| 238 | 50 237 | ax-mp | ⊢ ran vol ⊆ ( 0 [,] +∞ ) |
| 239 | iccssxr | ⊢ ( 0 [,] +∞ ) ⊆ ℝ* | |
| 240 | 238 239 | sstri | ⊢ ran vol ⊆ ℝ* |
| 241 | 236 240 | sstri | ⊢ ( vol “ ran 𝐹 ) ⊆ ℝ* |
| 242 | 204 220 | eqtrd | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ¬ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ) → ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) = +∞ ) |
| 243 | simpll | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ¬ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ) → 𝐹 : ℕ ⟶ dom vol ) | |
| 244 | ffun | ⊢ ( vol : dom vol ⟶ ( 0 [,] +∞ ) → Fun vol ) | |
| 245 | 50 244 | ax-mp | ⊢ Fun vol |
| 246 | frn | ⊢ ( 𝐹 : ℕ ⟶ dom vol → ran 𝐹 ⊆ dom vol ) | |
| 247 | funfvima2 | ⊢ ( ( Fun vol ∧ ran 𝐹 ⊆ dom vol ) → ( ( 𝐹 ‘ 𝑘 ) ∈ ran 𝐹 → ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ( vol “ ran 𝐹 ) ) ) | |
| 248 | 245 246 247 | sylancr | ⊢ ( 𝐹 : ℕ ⟶ dom vol → ( ( 𝐹 ‘ 𝑘 ) ∈ ran 𝐹 → ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ( vol “ ran 𝐹 ) ) ) |
| 249 | 243 224 248 | sylc | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ¬ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ) → ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ( vol “ ran 𝐹 ) ) |
| 250 | 242 249 | eqeltrrd | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ¬ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ) → +∞ ∈ ( vol “ ran 𝐹 ) ) |
| 251 | supxrpnf | ⊢ ( ( ( vol “ ran 𝐹 ) ⊆ ℝ* ∧ +∞ ∈ ( vol “ ran 𝐹 ) ) → sup ( ( vol “ ran 𝐹 ) , ℝ* , < ) = +∞ ) | |
| 252 | 241 250 251 | sylancr | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ¬ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ) → sup ( ( vol “ ran 𝐹 ) , ℝ* , < ) = +∞ ) |
| 253 | 233 235 252 | 3eqtr4d | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ¬ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ) → ( vol ‘ ∪ ran 𝐹 ) = sup ( ( vol “ ran 𝐹 ) , ℝ* , < ) ) |
| 254 | 253 | rexlimdvaa | ⊢ ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) → ( ∃ 𝑘 ∈ ℕ ¬ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ → ( vol ‘ ∪ ran 𝐹 ) = sup ( ( vol “ ran 𝐹 ) , ℝ* , < ) ) ) |
| 255 | 182 254 | biimtrrid | ⊢ ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) → ( ¬ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ → ( vol ‘ ∪ ran 𝐹 ) = sup ( ( vol “ ran 𝐹 ) , ℝ* , < ) ) ) |
| 256 | 181 255 | pm2.61d | ⊢ ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) → ( vol ‘ ∪ ran 𝐹 ) = sup ( ( vol “ ran 𝐹 ) , ℝ* , < ) ) |