This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The domain and codomain of the Lebesgue measure function. (Contributed by Mario Carneiro, 19-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | volf | ⊢ vol : dom vol ⟶ ( 0 [,] +∞ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovolf | ⊢ vol* : 𝒫 ℝ ⟶ ( 0 [,] +∞ ) | |
| 2 | ffun | ⊢ ( vol* : 𝒫 ℝ ⟶ ( 0 [,] +∞ ) → Fun vol* ) | |
| 3 | funres | ⊢ ( Fun vol* → Fun ( vol* ↾ dom vol ) ) | |
| 4 | 1 2 3 | mp2b | ⊢ Fun ( vol* ↾ dom vol ) |
| 5 | volres | ⊢ vol = ( vol* ↾ dom vol ) | |
| 6 | 5 | funeqi | ⊢ ( Fun vol ↔ Fun ( vol* ↾ dom vol ) ) |
| 7 | 4 6 | mpbir | ⊢ Fun vol |
| 8 | resss | ⊢ ( vol* ↾ dom vol ) ⊆ vol* | |
| 9 | 5 8 | eqsstri | ⊢ vol ⊆ vol* |
| 10 | fssxp | ⊢ ( vol* : 𝒫 ℝ ⟶ ( 0 [,] +∞ ) → vol* ⊆ ( 𝒫 ℝ × ( 0 [,] +∞ ) ) ) | |
| 11 | 1 10 | ax-mp | ⊢ vol* ⊆ ( 𝒫 ℝ × ( 0 [,] +∞ ) ) |
| 12 | 9 11 | sstri | ⊢ vol ⊆ ( 𝒫 ℝ × ( 0 [,] +∞ ) ) |
| 13 | 7 12 | pm3.2i | ⊢ ( Fun vol ∧ vol ⊆ ( 𝒫 ℝ × ( 0 [,] +∞ ) ) ) |
| 14 | funssxp | ⊢ ( ( Fun vol ∧ vol ⊆ ( 𝒫 ℝ × ( 0 [,] +∞ ) ) ) ↔ ( vol : dom vol ⟶ ( 0 [,] +∞ ) ∧ dom vol ⊆ 𝒫 ℝ ) ) | |
| 15 | 13 14 | mpbi | ⊢ ( vol : dom vol ⟶ ( 0 [,] +∞ ) ∧ dom vol ⊆ 𝒫 ℝ ) |
| 16 | 15 | simpli | ⊢ vol : dom vol ⟶ ( 0 [,] +∞ ) |