This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The measurable sets are closed under countable union. (Contributed by Mario Carneiro, 18-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iunmbl | ⊢ ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol → ∪ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv | ⊢ Ⅎ 𝑘 𝐴 ∈ dom vol | |
| 2 | nfcsb1v | ⊢ Ⅎ 𝑛 ⦋ 𝑘 / 𝑛 ⦌ 𝐴 | |
| 3 | 2 | nfel1 | ⊢ Ⅎ 𝑛 ⦋ 𝑘 / 𝑛 ⦌ 𝐴 ∈ dom vol |
| 4 | csbeq1a | ⊢ ( 𝑛 = 𝑘 → 𝐴 = ⦋ 𝑘 / 𝑛 ⦌ 𝐴 ) | |
| 5 | 4 | eleq1d | ⊢ ( 𝑛 = 𝑘 → ( 𝐴 ∈ dom vol ↔ ⦋ 𝑘 / 𝑛 ⦌ 𝐴 ∈ dom vol ) ) |
| 6 | 1 3 5 | cbvralw | ⊢ ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ↔ ∀ 𝑘 ∈ ℕ ⦋ 𝑘 / 𝑛 ⦌ 𝐴 ∈ dom vol ) |
| 7 | nfcv | ⊢ Ⅎ 𝑘 𝐴 | |
| 8 | 7 2 4 | cbviun | ⊢ ∪ 𝑛 ∈ ℕ 𝐴 = ∪ 𝑘 ∈ ℕ ⦋ 𝑘 / 𝑛 ⦌ 𝐴 |
| 9 | csbeq1 | ⊢ ( 𝑘 = 𝑚 → ⦋ 𝑘 / 𝑛 ⦌ 𝐴 = ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) | |
| 10 | 9 | iundisj | ⊢ ∪ 𝑘 ∈ ℕ ⦋ 𝑘 / 𝑛 ⦌ 𝐴 = ∪ 𝑘 ∈ ℕ ( ⦋ 𝑘 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) |
| 11 | 8 10 | eqtri | ⊢ ∪ 𝑛 ∈ ℕ 𝐴 = ∪ 𝑘 ∈ ℕ ( ⦋ 𝑘 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) |
| 12 | difexg | ⊢ ( ⦋ 𝑘 / 𝑛 ⦌ 𝐴 ∈ dom vol → ( ⦋ 𝑘 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ∈ V ) | |
| 13 | 12 | ralimi | ⊢ ( ∀ 𝑘 ∈ ℕ ⦋ 𝑘 / 𝑛 ⦌ 𝐴 ∈ dom vol → ∀ 𝑘 ∈ ℕ ( ⦋ 𝑘 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ∈ V ) |
| 14 | dfiun2g | ⊢ ( ∀ 𝑘 ∈ ℕ ( ⦋ 𝑘 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ∈ V → ∪ 𝑘 ∈ ℕ ( ⦋ 𝑘 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) = ∪ { 𝑦 ∣ ∃ 𝑘 ∈ ℕ 𝑦 = ( ⦋ 𝑘 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) } ) | |
| 15 | 13 14 | syl | ⊢ ( ∀ 𝑘 ∈ ℕ ⦋ 𝑘 / 𝑛 ⦌ 𝐴 ∈ dom vol → ∪ 𝑘 ∈ ℕ ( ⦋ 𝑘 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) = ∪ { 𝑦 ∣ ∃ 𝑘 ∈ ℕ 𝑦 = ( ⦋ 𝑘 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) } ) |
| 16 | 11 15 | eqtrid | ⊢ ( ∀ 𝑘 ∈ ℕ ⦋ 𝑘 / 𝑛 ⦌ 𝐴 ∈ dom vol → ∪ 𝑛 ∈ ℕ 𝐴 = ∪ { 𝑦 ∣ ∃ 𝑘 ∈ ℕ 𝑦 = ( ⦋ 𝑘 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) } ) |
| 17 | 6 16 | sylbi | ⊢ ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol → ∪ 𝑛 ∈ ℕ 𝐴 = ∪ { 𝑦 ∣ ∃ 𝑘 ∈ ℕ 𝑦 = ( ⦋ 𝑘 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) } ) |
| 18 | eqid | ⊢ ( 𝑘 ∈ ℕ ↦ ( ⦋ 𝑘 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ) = ( 𝑘 ∈ ℕ ↦ ( ⦋ 𝑘 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ) | |
| 19 | 18 | rnmpt | ⊢ ran ( 𝑘 ∈ ℕ ↦ ( ⦋ 𝑘 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ) = { 𝑦 ∣ ∃ 𝑘 ∈ ℕ 𝑦 = ( ⦋ 𝑘 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) } |
| 20 | 19 | unieqi | ⊢ ∪ ran ( 𝑘 ∈ ℕ ↦ ( ⦋ 𝑘 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ) = ∪ { 𝑦 ∣ ∃ 𝑘 ∈ ℕ 𝑦 = ( ⦋ 𝑘 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) } |
| 21 | 17 20 | eqtr4di | ⊢ ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol → ∪ 𝑛 ∈ ℕ 𝐴 = ∪ ran ( 𝑘 ∈ ℕ ↦ ( ⦋ 𝑘 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ) ) |
| 22 | 3 5 | rspc | ⊢ ( 𝑘 ∈ ℕ → ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol → ⦋ 𝑘 / 𝑛 ⦌ 𝐴 ∈ dom vol ) ) |
| 23 | 22 | impcom | ⊢ ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑘 ∈ ℕ ) → ⦋ 𝑘 / 𝑛 ⦌ 𝐴 ∈ dom vol ) |
| 24 | fzofi | ⊢ ( 1 ..^ 𝑘 ) ∈ Fin | |
| 25 | nfv | ⊢ Ⅎ 𝑚 𝐴 ∈ dom vol | |
| 26 | nfcsb1v | ⊢ Ⅎ 𝑛 ⦋ 𝑚 / 𝑛 ⦌ 𝐴 | |
| 27 | 26 | nfel1 | ⊢ Ⅎ 𝑛 ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ∈ dom vol |
| 28 | csbeq1a | ⊢ ( 𝑛 = 𝑚 → 𝐴 = ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) | |
| 29 | 28 | eleq1d | ⊢ ( 𝑛 = 𝑚 → ( 𝐴 ∈ dom vol ↔ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ∈ dom vol ) ) |
| 30 | 25 27 29 | cbvralw | ⊢ ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ↔ ∀ 𝑚 ∈ ℕ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ∈ dom vol ) |
| 31 | fzossnn | ⊢ ( 1 ..^ 𝑘 ) ⊆ ℕ | |
| 32 | ssralv | ⊢ ( ( 1 ..^ 𝑘 ) ⊆ ℕ → ( ∀ 𝑚 ∈ ℕ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ∈ dom vol → ∀ 𝑚 ∈ ( 1 ..^ 𝑘 ) ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ∈ dom vol ) ) | |
| 33 | 31 32 | ax-mp | ⊢ ( ∀ 𝑚 ∈ ℕ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ∈ dom vol → ∀ 𝑚 ∈ ( 1 ..^ 𝑘 ) ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ∈ dom vol ) |
| 34 | 30 33 | sylbi | ⊢ ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol → ∀ 𝑚 ∈ ( 1 ..^ 𝑘 ) ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ∈ dom vol ) |
| 35 | 34 | adantr | ⊢ ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑘 ∈ ℕ ) → ∀ 𝑚 ∈ ( 1 ..^ 𝑘 ) ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ∈ dom vol ) |
| 36 | finiunmbl | ⊢ ( ( ( 1 ..^ 𝑘 ) ∈ Fin ∧ ∀ 𝑚 ∈ ( 1 ..^ 𝑘 ) ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ∈ dom vol ) → ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ∈ dom vol ) | |
| 37 | 24 35 36 | sylancr | ⊢ ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑘 ∈ ℕ ) → ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ∈ dom vol ) |
| 38 | difmbl | ⊢ ( ( ⦋ 𝑘 / 𝑛 ⦌ 𝐴 ∈ dom vol ∧ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ∈ dom vol ) → ( ⦋ 𝑘 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ∈ dom vol ) | |
| 39 | 23 37 38 | syl2anc | ⊢ ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑘 ∈ ℕ ) → ( ⦋ 𝑘 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ∈ dom vol ) |
| 40 | 39 | fmpttd | ⊢ ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol → ( 𝑘 ∈ ℕ ↦ ( ⦋ 𝑘 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ) : ℕ ⟶ dom vol ) |
| 41 | csbeq1 | ⊢ ( 𝑖 = 𝑚 → ⦋ 𝑖 / 𝑛 ⦌ 𝐴 = ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) | |
| 42 | 41 | iundisj2 | ⊢ Disj 𝑖 ∈ ℕ ( ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑖 ) ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) |
| 43 | csbeq1 | ⊢ ( 𝑘 = 𝑖 → ⦋ 𝑘 / 𝑛 ⦌ 𝐴 = ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) | |
| 44 | oveq2 | ⊢ ( 𝑘 = 𝑖 → ( 1 ..^ 𝑘 ) = ( 1 ..^ 𝑖 ) ) | |
| 45 | 44 | iuneq1d | ⊢ ( 𝑘 = 𝑖 → ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ⦋ 𝑚 / 𝑛 ⦌ 𝐴 = ∪ 𝑚 ∈ ( 1 ..^ 𝑖 ) ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) |
| 46 | 43 45 | difeq12d | ⊢ ( 𝑘 = 𝑖 → ( ⦋ 𝑘 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) = ( ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑖 ) ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ) |
| 47 | simpr | ⊢ ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑖 ∈ ℕ ) → 𝑖 ∈ ℕ ) | |
| 48 | nfcsb1v | ⊢ Ⅎ 𝑛 ⦋ 𝑖 / 𝑛 ⦌ 𝐴 | |
| 49 | 48 | nfel1 | ⊢ Ⅎ 𝑛 ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ∈ dom vol |
| 50 | csbeq1a | ⊢ ( 𝑛 = 𝑖 → 𝐴 = ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) | |
| 51 | 50 | eleq1d | ⊢ ( 𝑛 = 𝑖 → ( 𝐴 ∈ dom vol ↔ ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ∈ dom vol ) ) |
| 52 | 49 51 | rspc | ⊢ ( 𝑖 ∈ ℕ → ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol → ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ∈ dom vol ) ) |
| 53 | 52 | impcom | ⊢ ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑖 ∈ ℕ ) → ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ∈ dom vol ) |
| 54 | 53 | difexd | ⊢ ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑖 ∈ ℕ ) → ( ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑖 ) ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ∈ V ) |
| 55 | 18 46 47 54 | fvmptd3 | ⊢ ( ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑖 ∈ ℕ ) → ( ( 𝑘 ∈ ℕ ↦ ( ⦋ 𝑘 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ) ‘ 𝑖 ) = ( ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑖 ) ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ) |
| 56 | 55 | disjeq2dv | ⊢ ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol → ( Disj 𝑖 ∈ ℕ ( ( 𝑘 ∈ ℕ ↦ ( ⦋ 𝑘 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ) ‘ 𝑖 ) ↔ Disj 𝑖 ∈ ℕ ( ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑖 ) ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ) ) |
| 57 | 42 56 | mpbiri | ⊢ ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol → Disj 𝑖 ∈ ℕ ( ( 𝑘 ∈ ℕ ↦ ( ⦋ 𝑘 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ) ‘ 𝑖 ) ) |
| 58 | eqid | ⊢ ( 𝑦 ∈ ℕ ↦ ( vol* ‘ ( 𝑥 ∩ ( ( 𝑘 ∈ ℕ ↦ ( ⦋ 𝑘 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ) ‘ 𝑦 ) ) ) ) = ( 𝑦 ∈ ℕ ↦ ( vol* ‘ ( 𝑥 ∩ ( ( 𝑘 ∈ ℕ ↦ ( ⦋ 𝑘 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ) ‘ 𝑦 ) ) ) ) | |
| 59 | 40 57 58 | voliunlem2 | ⊢ ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol → ∪ ran ( 𝑘 ∈ ℕ ↦ ( ⦋ 𝑘 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑚 ∈ ( 1 ..^ 𝑘 ) ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ) ∈ dom vol ) |
| 60 | 21 59 | eqeltrd | ⊢ ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol → ∪ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ) |