This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The converse of a set is a set. Corollary 6.8(1) of TakeutiZaring p. 26. (Contributed by NM, 17-Mar-1998)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnvexg | ⊢ ( 𝐴 ∈ 𝑉 → ◡ 𝐴 ∈ V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv | ⊢ Rel ◡ 𝐴 | |
| 2 | relssdmrn | ⊢ ( Rel ◡ 𝐴 → ◡ 𝐴 ⊆ ( dom ◡ 𝐴 × ran ◡ 𝐴 ) ) | |
| 3 | 1 2 | ax-mp | ⊢ ◡ 𝐴 ⊆ ( dom ◡ 𝐴 × ran ◡ 𝐴 ) |
| 4 | df-rn | ⊢ ran 𝐴 = dom ◡ 𝐴 | |
| 5 | rnexg | ⊢ ( 𝐴 ∈ 𝑉 → ran 𝐴 ∈ V ) | |
| 6 | 4 5 | eqeltrrid | ⊢ ( 𝐴 ∈ 𝑉 → dom ◡ 𝐴 ∈ V ) |
| 7 | dfdm4 | ⊢ dom 𝐴 = ran ◡ 𝐴 | |
| 8 | dmexg | ⊢ ( 𝐴 ∈ 𝑉 → dom 𝐴 ∈ V ) | |
| 9 | 7 8 | eqeltrrid | ⊢ ( 𝐴 ∈ 𝑉 → ran ◡ 𝐴 ∈ V ) |
| 10 | 6 9 | xpexd | ⊢ ( 𝐴 ∈ 𝑉 → ( dom ◡ 𝐴 × ran ◡ 𝐴 ) ∈ V ) |
| 11 | ssexg | ⊢ ( ( ◡ 𝐴 ⊆ ( dom ◡ 𝐴 × ran ◡ 𝐴 ) ∧ ( dom ◡ 𝐴 × ran ◡ 𝐴 ) ∈ V ) → ◡ 𝐴 ∈ V ) | |
| 12 | 3 10 11 | sylancr | ⊢ ( 𝐴 ∈ 𝑉 → ◡ 𝐴 ∈ V ) |