This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the function F is strictly positive on a set of positive measure, then the integral of the function is positive. (Contributed by Mario Carneiro, 30-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itg2gt0.1 | |- ( ph -> A e. dom vol ) |
|
| itg2gt0.2 | |- ( ph -> 0 < ( vol ` A ) ) |
||
| itg2gt0.3 | |- ( ph -> F : RR --> ( 0 [,) +oo ) ) |
||
| itg2gt0.4 | |- ( ph -> F e. MblFn ) |
||
| itg2gt0.5 | |- ( ( ph /\ x e. A ) -> 0 < ( F ` x ) ) |
||
| Assertion | itg2gt0 | |- ( ph -> 0 < ( S.2 ` F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itg2gt0.1 | |- ( ph -> A e. dom vol ) |
|
| 2 | itg2gt0.2 | |- ( ph -> 0 < ( vol ` A ) ) |
|
| 3 | itg2gt0.3 | |- ( ph -> F : RR --> ( 0 [,) +oo ) ) |
|
| 4 | itg2gt0.4 | |- ( ph -> F e. MblFn ) |
|
| 5 | itg2gt0.5 | |- ( ( ph /\ x e. A ) -> 0 < ( F ` x ) ) |
|
| 6 | iccssxr | |- ( 0 [,] +oo ) C_ RR* |
|
| 7 | volf | |- vol : dom vol --> ( 0 [,] +oo ) |
|
| 8 | 7 | ffvelcdmi | |- ( A e. dom vol -> ( vol ` A ) e. ( 0 [,] +oo ) ) |
| 9 | 6 8 | sselid | |- ( A e. dom vol -> ( vol ` A ) e. RR* ) |
| 10 | 1 9 | syl | |- ( ph -> ( vol ` A ) e. RR* ) |
| 11 | 10 | adantr | |- ( ( ph /\ -. 0 < ( S.2 ` F ) ) -> ( vol ` A ) e. RR* ) |
| 12 | 4 | elexd | |- ( ph -> F e. _V ) |
| 13 | cnvexg | |- ( F e. _V -> `' F e. _V ) |
|
| 14 | 12 13 | syl | |- ( ph -> `' F e. _V ) |
| 15 | imaexg | |- ( `' F e. _V -> ( `' F " ( ( 1 / n ) (,) +oo ) ) e. _V ) |
|
| 16 | 14 15 | syl | |- ( ph -> ( `' F " ( ( 1 / n ) (,) +oo ) ) e. _V ) |
| 17 | 16 | adantr | |- ( ( ph /\ n e. NN ) -> ( `' F " ( ( 1 / n ) (,) +oo ) ) e. _V ) |
| 18 | 17 | fmpttd | |- ( ph -> ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) : NN --> _V ) |
| 19 | 18 | ffnd | |- ( ph -> ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) Fn NN ) |
| 20 | fniunfv | |- ( ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) Fn NN -> U_ k e. NN ( ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ` k ) = U. ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ) |
|
| 21 | 19 20 | syl | |- ( ph -> U_ k e. NN ( ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ` k ) = U. ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ) |
| 22 | rge0ssre | |- ( 0 [,) +oo ) C_ RR |
|
| 23 | fss | |- ( ( F : RR --> ( 0 [,) +oo ) /\ ( 0 [,) +oo ) C_ RR ) -> F : RR --> RR ) |
|
| 24 | 3 22 23 | sylancl | |- ( ph -> F : RR --> RR ) |
| 25 | mbfima | |- ( ( F e. MblFn /\ F : RR --> RR ) -> ( `' F " ( ( 1 / n ) (,) +oo ) ) e. dom vol ) |
|
| 26 | 4 24 25 | syl2anc | |- ( ph -> ( `' F " ( ( 1 / n ) (,) +oo ) ) e. dom vol ) |
| 27 | 26 | adantr | |- ( ( ph /\ n e. NN ) -> ( `' F " ( ( 1 / n ) (,) +oo ) ) e. dom vol ) |
| 28 | 27 | fmpttd | |- ( ph -> ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) : NN --> dom vol ) |
| 29 | 28 | ffvelcdmda | |- ( ( ph /\ k e. NN ) -> ( ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ` k ) e. dom vol ) |
| 30 | 29 | ralrimiva | |- ( ph -> A. k e. NN ( ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ` k ) e. dom vol ) |
| 31 | iunmbl | |- ( A. k e. NN ( ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ` k ) e. dom vol -> U_ k e. NN ( ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ` k ) e. dom vol ) |
|
| 32 | 30 31 | syl | |- ( ph -> U_ k e. NN ( ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ` k ) e. dom vol ) |
| 33 | 21 32 | eqeltrrd | |- ( ph -> U. ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) e. dom vol ) |
| 34 | mblss | |- ( U. ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) e. dom vol -> U. ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) C_ RR ) |
|
| 35 | 33 34 | syl | |- ( ph -> U. ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) C_ RR ) |
| 36 | ovolcl | |- ( U. ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) C_ RR -> ( vol* ` U. ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ) e. RR* ) |
|
| 37 | 35 36 | syl | |- ( ph -> ( vol* ` U. ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ) e. RR* ) |
| 38 | 37 | adantr | |- ( ( ph /\ -. 0 < ( S.2 ` F ) ) -> ( vol* ` U. ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ) e. RR* ) |
| 39 | 0xr | |- 0 e. RR* |
|
| 40 | 39 | a1i | |- ( ( ph /\ -. 0 < ( S.2 ` F ) ) -> 0 e. RR* ) |
| 41 | mblvol | |- ( A e. dom vol -> ( vol ` A ) = ( vol* ` A ) ) |
|
| 42 | 1 41 | syl | |- ( ph -> ( vol ` A ) = ( vol* ` A ) ) |
| 43 | mblss | |- ( A e. dom vol -> A C_ RR ) |
|
| 44 | 1 43 | syl | |- ( ph -> A C_ RR ) |
| 45 | 44 | sselda | |- ( ( ph /\ x e. A ) -> x e. RR ) |
| 46 | 3 | ffvelcdmda | |- ( ( ph /\ x e. RR ) -> ( F ` x ) e. ( 0 [,) +oo ) ) |
| 47 | elrege0 | |- ( ( F ` x ) e. ( 0 [,) +oo ) <-> ( ( F ` x ) e. RR /\ 0 <_ ( F ` x ) ) ) |
|
| 48 | 46 47 | sylib | |- ( ( ph /\ x e. RR ) -> ( ( F ` x ) e. RR /\ 0 <_ ( F ` x ) ) ) |
| 49 | 48 | simpld | |- ( ( ph /\ x e. RR ) -> ( F ` x ) e. RR ) |
| 50 | 45 49 | syldan | |- ( ( ph /\ x e. A ) -> ( F ` x ) e. RR ) |
| 51 | nnrecl | |- ( ( ( F ` x ) e. RR /\ 0 < ( F ` x ) ) -> E. k e. NN ( 1 / k ) < ( F ` x ) ) |
|
| 52 | 50 5 51 | syl2anc | |- ( ( ph /\ x e. A ) -> E. k e. NN ( 1 / k ) < ( F ` x ) ) |
| 53 | 3 | ffnd | |- ( ph -> F Fn RR ) |
| 54 | 53 | ad2antrr | |- ( ( ( ph /\ x e. A ) /\ k e. NN ) -> F Fn RR ) |
| 55 | elpreima | |- ( F Fn RR -> ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) <-> ( x e. RR /\ ( F ` x ) e. ( ( 1 / k ) (,) +oo ) ) ) ) |
|
| 56 | 54 55 | syl | |- ( ( ( ph /\ x e. A ) /\ k e. NN ) -> ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) <-> ( x e. RR /\ ( F ` x ) e. ( ( 1 / k ) (,) +oo ) ) ) ) |
| 57 | 45 | adantr | |- ( ( ( ph /\ x e. A ) /\ k e. NN ) -> x e. RR ) |
| 58 | 57 | biantrurd | |- ( ( ( ph /\ x e. A ) /\ k e. NN ) -> ( ( F ` x ) e. ( ( 1 / k ) (,) +oo ) <-> ( x e. RR /\ ( F ` x ) e. ( ( 1 / k ) (,) +oo ) ) ) ) |
| 59 | nnrecre | |- ( k e. NN -> ( 1 / k ) e. RR ) |
|
| 60 | 59 | adantl | |- ( ( ph /\ k e. NN ) -> ( 1 / k ) e. RR ) |
| 61 | 60 | rexrd | |- ( ( ph /\ k e. NN ) -> ( 1 / k ) e. RR* ) |
| 62 | 61 | adantlr | |- ( ( ( ph /\ x e. A ) /\ k e. NN ) -> ( 1 / k ) e. RR* ) |
| 63 | elioopnf | |- ( ( 1 / k ) e. RR* -> ( ( F ` x ) e. ( ( 1 / k ) (,) +oo ) <-> ( ( F ` x ) e. RR /\ ( 1 / k ) < ( F ` x ) ) ) ) |
|
| 64 | 62 63 | syl | |- ( ( ( ph /\ x e. A ) /\ k e. NN ) -> ( ( F ` x ) e. ( ( 1 / k ) (,) +oo ) <-> ( ( F ` x ) e. RR /\ ( 1 / k ) < ( F ` x ) ) ) ) |
| 65 | 56 58 64 | 3bitr2d | |- ( ( ( ph /\ x e. A ) /\ k e. NN ) -> ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) <-> ( ( F ` x ) e. RR /\ ( 1 / k ) < ( F ` x ) ) ) ) |
| 66 | id | |- ( k e. NN -> k e. NN ) |
|
| 67 | imaexg | |- ( `' F e. _V -> ( `' F " ( ( 1 / k ) (,) +oo ) ) e. _V ) |
|
| 68 | 14 67 | syl | |- ( ph -> ( `' F " ( ( 1 / k ) (,) +oo ) ) e. _V ) |
| 69 | 68 | adantr | |- ( ( ph /\ x e. A ) -> ( `' F " ( ( 1 / k ) (,) +oo ) ) e. _V ) |
| 70 | oveq2 | |- ( n = k -> ( 1 / n ) = ( 1 / k ) ) |
|
| 71 | 70 | oveq1d | |- ( n = k -> ( ( 1 / n ) (,) +oo ) = ( ( 1 / k ) (,) +oo ) ) |
| 72 | 71 | imaeq2d | |- ( n = k -> ( `' F " ( ( 1 / n ) (,) +oo ) ) = ( `' F " ( ( 1 / k ) (,) +oo ) ) ) |
| 73 | eqid | |- ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) = ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) |
|
| 74 | 72 73 | fvmptg | |- ( ( k e. NN /\ ( `' F " ( ( 1 / k ) (,) +oo ) ) e. _V ) -> ( ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ` k ) = ( `' F " ( ( 1 / k ) (,) +oo ) ) ) |
| 75 | 66 69 74 | syl2anr | |- ( ( ( ph /\ x e. A ) /\ k e. NN ) -> ( ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ` k ) = ( `' F " ( ( 1 / k ) (,) +oo ) ) ) |
| 76 | 75 | eleq2d | |- ( ( ( ph /\ x e. A ) /\ k e. NN ) -> ( x e. ( ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ` k ) <-> x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) ) ) |
| 77 | 50 | adantr | |- ( ( ( ph /\ x e. A ) /\ k e. NN ) -> ( F ` x ) e. RR ) |
| 78 | 77 | biantrurd | |- ( ( ( ph /\ x e. A ) /\ k e. NN ) -> ( ( 1 / k ) < ( F ` x ) <-> ( ( F ` x ) e. RR /\ ( 1 / k ) < ( F ` x ) ) ) ) |
| 79 | 65 76 78 | 3bitr4rd | |- ( ( ( ph /\ x e. A ) /\ k e. NN ) -> ( ( 1 / k ) < ( F ` x ) <-> x e. ( ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ` k ) ) ) |
| 80 | 79 | rexbidva | |- ( ( ph /\ x e. A ) -> ( E. k e. NN ( 1 / k ) < ( F ` x ) <-> E. k e. NN x e. ( ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ` k ) ) ) |
| 81 | 52 80 | mpbid | |- ( ( ph /\ x e. A ) -> E. k e. NN x e. ( ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ` k ) ) |
| 82 | 81 | ex | |- ( ph -> ( x e. A -> E. k e. NN x e. ( ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ` k ) ) ) |
| 83 | eluni2 | |- ( x e. U. ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) <-> E. z e. ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) x e. z ) |
|
| 84 | eleq2 | |- ( z = ( ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ` k ) -> ( x e. z <-> x e. ( ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ` k ) ) ) |
|
| 85 | 84 | rexrn | |- ( ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) Fn NN -> ( E. z e. ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) x e. z <-> E. k e. NN x e. ( ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ` k ) ) ) |
| 86 | 19 85 | syl | |- ( ph -> ( E. z e. ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) x e. z <-> E. k e. NN x e. ( ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ` k ) ) ) |
| 87 | 83 86 | bitrid | |- ( ph -> ( x e. U. ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) <-> E. k e. NN x e. ( ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ` k ) ) ) |
| 88 | 82 87 | sylibrd | |- ( ph -> ( x e. A -> x e. U. ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ) ) |
| 89 | 88 | ssrdv | |- ( ph -> A C_ U. ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ) |
| 90 | ovolss | |- ( ( A C_ U. ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) /\ U. ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) C_ RR ) -> ( vol* ` A ) <_ ( vol* ` U. ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ) ) |
|
| 91 | 89 35 90 | syl2anc | |- ( ph -> ( vol* ` A ) <_ ( vol* ` U. ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ) ) |
| 92 | 42 91 | eqbrtrd | |- ( ph -> ( vol ` A ) <_ ( vol* ` U. ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ) ) |
| 93 | 92 | adantr | |- ( ( ph /\ -. 0 < ( S.2 ` F ) ) -> ( vol ` A ) <_ ( vol* ` U. ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ) ) |
| 94 | mblvol | |- ( U. ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) e. dom vol -> ( vol ` U. ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ) = ( vol* ` U. ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ) ) |
|
| 95 | 33 94 | syl | |- ( ph -> ( vol ` U. ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ) = ( vol* ` U. ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ) ) |
| 96 | peano2nn | |- ( k e. NN -> ( k + 1 ) e. NN ) |
|
| 97 | 96 | adantl | |- ( ( ph /\ k e. NN ) -> ( k + 1 ) e. NN ) |
| 98 | nnrecre | |- ( ( k + 1 ) e. NN -> ( 1 / ( k + 1 ) ) e. RR ) |
|
| 99 | 97 98 | syl | |- ( ( ph /\ k e. NN ) -> ( 1 / ( k + 1 ) ) e. RR ) |
| 100 | 99 | rexrd | |- ( ( ph /\ k e. NN ) -> ( 1 / ( k + 1 ) ) e. RR* ) |
| 101 | nnre | |- ( k e. NN -> k e. RR ) |
|
| 102 | 101 | adantl | |- ( ( ph /\ k e. NN ) -> k e. RR ) |
| 103 | 102 | lep1d | |- ( ( ph /\ k e. NN ) -> k <_ ( k + 1 ) ) |
| 104 | nngt0 | |- ( k e. NN -> 0 < k ) |
|
| 105 | 104 | adantl | |- ( ( ph /\ k e. NN ) -> 0 < k ) |
| 106 | 97 | nnred | |- ( ( ph /\ k e. NN ) -> ( k + 1 ) e. RR ) |
| 107 | 97 | nngt0d | |- ( ( ph /\ k e. NN ) -> 0 < ( k + 1 ) ) |
| 108 | lerec | |- ( ( ( k e. RR /\ 0 < k ) /\ ( ( k + 1 ) e. RR /\ 0 < ( k + 1 ) ) ) -> ( k <_ ( k + 1 ) <-> ( 1 / ( k + 1 ) ) <_ ( 1 / k ) ) ) |
|
| 109 | 102 105 106 107 108 | syl22anc | |- ( ( ph /\ k e. NN ) -> ( k <_ ( k + 1 ) <-> ( 1 / ( k + 1 ) ) <_ ( 1 / k ) ) ) |
| 110 | 103 109 | mpbid | |- ( ( ph /\ k e. NN ) -> ( 1 / ( k + 1 ) ) <_ ( 1 / k ) ) |
| 111 | iooss1 | |- ( ( ( 1 / ( k + 1 ) ) e. RR* /\ ( 1 / ( k + 1 ) ) <_ ( 1 / k ) ) -> ( ( 1 / k ) (,) +oo ) C_ ( ( 1 / ( k + 1 ) ) (,) +oo ) ) |
|
| 112 | 100 110 111 | syl2anc | |- ( ( ph /\ k e. NN ) -> ( ( 1 / k ) (,) +oo ) C_ ( ( 1 / ( k + 1 ) ) (,) +oo ) ) |
| 113 | imass2 | |- ( ( ( 1 / k ) (,) +oo ) C_ ( ( 1 / ( k + 1 ) ) (,) +oo ) -> ( `' F " ( ( 1 / k ) (,) +oo ) ) C_ ( `' F " ( ( 1 / ( k + 1 ) ) (,) +oo ) ) ) |
|
| 114 | 112 113 | syl | |- ( ( ph /\ k e. NN ) -> ( `' F " ( ( 1 / k ) (,) +oo ) ) C_ ( `' F " ( ( 1 / ( k + 1 ) ) (,) +oo ) ) ) |
| 115 | 66 68 74 | syl2anr | |- ( ( ph /\ k e. NN ) -> ( ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ` k ) = ( `' F " ( ( 1 / k ) (,) +oo ) ) ) |
| 116 | imaexg | |- ( `' F e. _V -> ( `' F " ( ( 1 / ( k + 1 ) ) (,) +oo ) ) e. _V ) |
|
| 117 | 14 116 | syl | |- ( ph -> ( `' F " ( ( 1 / ( k + 1 ) ) (,) +oo ) ) e. _V ) |
| 118 | oveq2 | |- ( n = ( k + 1 ) -> ( 1 / n ) = ( 1 / ( k + 1 ) ) ) |
|
| 119 | 118 | oveq1d | |- ( n = ( k + 1 ) -> ( ( 1 / n ) (,) +oo ) = ( ( 1 / ( k + 1 ) ) (,) +oo ) ) |
| 120 | 119 | imaeq2d | |- ( n = ( k + 1 ) -> ( `' F " ( ( 1 / n ) (,) +oo ) ) = ( `' F " ( ( 1 / ( k + 1 ) ) (,) +oo ) ) ) |
| 121 | 120 73 | fvmptg | |- ( ( ( k + 1 ) e. NN /\ ( `' F " ( ( 1 / ( k + 1 ) ) (,) +oo ) ) e. _V ) -> ( ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ` ( k + 1 ) ) = ( `' F " ( ( 1 / ( k + 1 ) ) (,) +oo ) ) ) |
| 122 | 96 117 121 | syl2anr | |- ( ( ph /\ k e. NN ) -> ( ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ` ( k + 1 ) ) = ( `' F " ( ( 1 / ( k + 1 ) ) (,) +oo ) ) ) |
| 123 | 114 115 122 | 3sstr4d | |- ( ( ph /\ k e. NN ) -> ( ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ` k ) C_ ( ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ` ( k + 1 ) ) ) |
| 124 | 123 | ralrimiva | |- ( ph -> A. k e. NN ( ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ` k ) C_ ( ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ` ( k + 1 ) ) ) |
| 125 | volsup | |- ( ( ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) : NN --> dom vol /\ A. k e. NN ( ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ` k ) C_ ( ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ` ( k + 1 ) ) ) -> ( vol ` U. ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ) = sup ( ( vol " ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ) , RR* , < ) ) |
|
| 126 | 28 124 125 | syl2anc | |- ( ph -> ( vol ` U. ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ) = sup ( ( vol " ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ) , RR* , < ) ) |
| 127 | 95 126 | eqtr3d | |- ( ph -> ( vol* ` U. ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ) = sup ( ( vol " ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ) , RR* , < ) ) |
| 128 | 127 | adantr | |- ( ( ph /\ -. 0 < ( S.2 ` F ) ) -> ( vol* ` U. ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ) = sup ( ( vol " ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ) , RR* , < ) ) |
| 129 | 68 | adantr | |- ( ( ph /\ -. 0 < ( S.2 ` F ) ) -> ( `' F " ( ( 1 / k ) (,) +oo ) ) e. _V ) |
| 130 | 66 129 74 | syl2anr | |- ( ( ( ph /\ -. 0 < ( S.2 ` F ) ) /\ k e. NN ) -> ( ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ` k ) = ( `' F " ( ( 1 / k ) (,) +oo ) ) ) |
| 131 | 130 | fveq2d | |- ( ( ( ph /\ -. 0 < ( S.2 ` F ) ) /\ k e. NN ) -> ( vol ` ( ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ` k ) ) = ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) ) |
| 132 | 39 | a1i | |- ( ( ph /\ ( k e. NN /\ 0 < ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) ) ) -> 0 e. RR* ) |
| 133 | nnrecgt0 | |- ( k e. NN -> 0 < ( 1 / k ) ) |
|
| 134 | 133 | adantl | |- ( ( ph /\ k e. NN ) -> 0 < ( 1 / k ) ) |
| 135 | 0re | |- 0 e. RR |
|
| 136 | ltle | |- ( ( 0 e. RR /\ ( 1 / k ) e. RR ) -> ( 0 < ( 1 / k ) -> 0 <_ ( 1 / k ) ) ) |
|
| 137 | 135 60 136 | sylancr | |- ( ( ph /\ k e. NN ) -> ( 0 < ( 1 / k ) -> 0 <_ ( 1 / k ) ) ) |
| 138 | 134 137 | mpd | |- ( ( ph /\ k e. NN ) -> 0 <_ ( 1 / k ) ) |
| 139 | elxrge0 | |- ( ( 1 / k ) e. ( 0 [,] +oo ) <-> ( ( 1 / k ) e. RR* /\ 0 <_ ( 1 / k ) ) ) |
|
| 140 | 61 138 139 | sylanbrc | |- ( ( ph /\ k e. NN ) -> ( 1 / k ) e. ( 0 [,] +oo ) ) |
| 141 | 0e0iccpnf | |- 0 e. ( 0 [,] +oo ) |
|
| 142 | ifcl | |- ( ( ( 1 / k ) e. ( 0 [,] +oo ) /\ 0 e. ( 0 [,] +oo ) ) -> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) e. ( 0 [,] +oo ) ) |
|
| 143 | 140 141 142 | sylancl | |- ( ( ph /\ k e. NN ) -> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) e. ( 0 [,] +oo ) ) |
| 144 | 143 | adantr | |- ( ( ( ph /\ k e. NN ) /\ x e. RR ) -> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) e. ( 0 [,] +oo ) ) |
| 145 | 144 | fmpttd | |- ( ( ph /\ k e. NN ) -> ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) : RR --> ( 0 [,] +oo ) ) |
| 146 | 145 | adantrr | |- ( ( ph /\ ( k e. NN /\ 0 < ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) ) ) -> ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) : RR --> ( 0 [,] +oo ) ) |
| 147 | itg2cl | |- ( ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) : RR --> ( 0 [,] +oo ) -> ( S.2 ` ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) ) e. RR* ) |
|
| 148 | 146 147 | syl | |- ( ( ph /\ ( k e. NN /\ 0 < ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) ) ) -> ( S.2 ` ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) ) e. RR* ) |
| 149 | icossicc | |- ( 0 [,) +oo ) C_ ( 0 [,] +oo ) |
|
| 150 | fss | |- ( ( F : RR --> ( 0 [,) +oo ) /\ ( 0 [,) +oo ) C_ ( 0 [,] +oo ) ) -> F : RR --> ( 0 [,] +oo ) ) |
|
| 151 | 3 149 150 | sylancl | |- ( ph -> F : RR --> ( 0 [,] +oo ) ) |
| 152 | itg2cl | |- ( F : RR --> ( 0 [,] +oo ) -> ( S.2 ` F ) e. RR* ) |
|
| 153 | 151 152 | syl | |- ( ph -> ( S.2 ` F ) e. RR* ) |
| 154 | 153 | adantr | |- ( ( ph /\ ( k e. NN /\ 0 < ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) ) ) -> ( S.2 ` F ) e. RR* ) |
| 155 | 0nrp | |- -. 0 e. RR+ |
|
| 156 | simpr | |- ( ( ( ph /\ ( k e. NN /\ 0 < ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) ) ) /\ 0 = ( S.2 ` ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) ) ) -> 0 = ( S.2 ` ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) ) ) |
|
| 157 | 115 29 | eqeltrrd | |- ( ( ph /\ k e. NN ) -> ( `' F " ( ( 1 / k ) (,) +oo ) ) e. dom vol ) |
| 158 | 157 | adantrr | |- ( ( ph /\ ( k e. NN /\ 0 < ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) ) ) -> ( `' F " ( ( 1 / k ) (,) +oo ) ) e. dom vol ) |
| 159 | 158 | adantr | |- ( ( ( ph /\ ( k e. NN /\ 0 < ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) ) ) /\ 0 = ( S.2 ` ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) ) ) -> ( `' F " ( ( 1 / k ) (,) +oo ) ) e. dom vol ) |
| 160 | 156 135 | eqeltrrdi | |- ( ( ( ph /\ ( k e. NN /\ 0 < ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) ) ) /\ 0 = ( S.2 ` ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) ) ) -> ( S.2 ` ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) ) e. RR ) |
| 161 | 60 134 | elrpd | |- ( ( ph /\ k e. NN ) -> ( 1 / k ) e. RR+ ) |
| 162 | 161 | adantrr | |- ( ( ph /\ ( k e. NN /\ 0 < ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) ) ) -> ( 1 / k ) e. RR+ ) |
| 163 | 162 | adantr | |- ( ( ( ph /\ ( k e. NN /\ 0 < ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) ) ) /\ 0 = ( S.2 ` ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) ) ) -> ( 1 / k ) e. RR+ ) |
| 164 | itg2const2 | |- ( ( ( `' F " ( ( 1 / k ) (,) +oo ) ) e. dom vol /\ ( 1 / k ) e. RR+ ) -> ( ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) e. RR <-> ( S.2 ` ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) ) e. RR ) ) |
|
| 165 | 159 163 164 | syl2anc | |- ( ( ( ph /\ ( k e. NN /\ 0 < ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) ) ) /\ 0 = ( S.2 ` ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) ) ) -> ( ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) e. RR <-> ( S.2 ` ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) ) e. RR ) ) |
| 166 | 160 165 | mpbird | |- ( ( ( ph /\ ( k e. NN /\ 0 < ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) ) ) /\ 0 = ( S.2 ` ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) ) ) -> ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) e. RR ) |
| 167 | elrege0 | |- ( ( 1 / k ) e. ( 0 [,) +oo ) <-> ( ( 1 / k ) e. RR /\ 0 <_ ( 1 / k ) ) ) |
|
| 168 | 60 138 167 | sylanbrc | |- ( ( ph /\ k e. NN ) -> ( 1 / k ) e. ( 0 [,) +oo ) ) |
| 169 | 168 | adantrr | |- ( ( ph /\ ( k e. NN /\ 0 < ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) ) ) -> ( 1 / k ) e. ( 0 [,) +oo ) ) |
| 170 | 169 | adantr | |- ( ( ( ph /\ ( k e. NN /\ 0 < ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) ) ) /\ 0 = ( S.2 ` ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) ) ) -> ( 1 / k ) e. ( 0 [,) +oo ) ) |
| 171 | itg2const | |- ( ( ( `' F " ( ( 1 / k ) (,) +oo ) ) e. dom vol /\ ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) e. RR /\ ( 1 / k ) e. ( 0 [,) +oo ) ) -> ( S.2 ` ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) ) = ( ( 1 / k ) x. ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) ) ) |
|
| 172 | 159 166 170 171 | syl3anc | |- ( ( ( ph /\ ( k e. NN /\ 0 < ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) ) ) /\ 0 = ( S.2 ` ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) ) ) -> ( S.2 ` ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) ) = ( ( 1 / k ) x. ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) ) ) |
| 173 | 156 172 | eqtrd | |- ( ( ( ph /\ ( k e. NN /\ 0 < ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) ) ) /\ 0 = ( S.2 ` ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) ) ) -> 0 = ( ( 1 / k ) x. ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) ) ) |
| 174 | simplrr | |- ( ( ( ph /\ ( k e. NN /\ 0 < ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) ) ) /\ 0 = ( S.2 ` ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) ) ) -> 0 < ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) ) |
|
| 175 | 166 174 | elrpd | |- ( ( ( ph /\ ( k e. NN /\ 0 < ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) ) ) /\ 0 = ( S.2 ` ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) ) ) -> ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) e. RR+ ) |
| 176 | 163 175 | rpmulcld | |- ( ( ( ph /\ ( k e. NN /\ 0 < ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) ) ) /\ 0 = ( S.2 ` ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) ) ) -> ( ( 1 / k ) x. ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) ) e. RR+ ) |
| 177 | 173 176 | eqeltrd | |- ( ( ( ph /\ ( k e. NN /\ 0 < ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) ) ) /\ 0 = ( S.2 ` ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) ) ) -> 0 e. RR+ ) |
| 178 | 177 | ex | |- ( ( ph /\ ( k e. NN /\ 0 < ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) ) ) -> ( 0 = ( S.2 ` ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) ) -> 0 e. RR+ ) ) |
| 179 | 155 178 | mtoi | |- ( ( ph /\ ( k e. NN /\ 0 < ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) ) ) -> -. 0 = ( S.2 ` ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) ) ) |
| 180 | itg2ge0 | |- ( ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) : RR --> ( 0 [,] +oo ) -> 0 <_ ( S.2 ` ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) ) ) |
|
| 181 | 146 180 | syl | |- ( ( ph /\ ( k e. NN /\ 0 < ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) ) ) -> 0 <_ ( S.2 ` ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) ) ) |
| 182 | xrleloe | |- ( ( 0 e. RR* /\ ( S.2 ` ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) ) e. RR* ) -> ( 0 <_ ( S.2 ` ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) ) <-> ( 0 < ( S.2 ` ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) ) \/ 0 = ( S.2 ` ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) ) ) ) ) |
|
| 183 | 39 148 182 | sylancr | |- ( ( ph /\ ( k e. NN /\ 0 < ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) ) ) -> ( 0 <_ ( S.2 ` ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) ) <-> ( 0 < ( S.2 ` ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) ) \/ 0 = ( S.2 ` ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) ) ) ) ) |
| 184 | 181 183 | mpbid | |- ( ( ph /\ ( k e. NN /\ 0 < ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) ) ) -> ( 0 < ( S.2 ` ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) ) \/ 0 = ( S.2 ` ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) ) ) ) |
| 185 | 184 | ord | |- ( ( ph /\ ( k e. NN /\ 0 < ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) ) ) -> ( -. 0 < ( S.2 ` ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) ) -> 0 = ( S.2 ` ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) ) ) ) |
| 186 | 179 185 | mt3d | |- ( ( ph /\ ( k e. NN /\ 0 < ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) ) ) -> 0 < ( S.2 ` ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) ) ) |
| 187 | 151 | adantr | |- ( ( ph /\ ( k e. NN /\ 0 < ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) ) ) -> F : RR --> ( 0 [,] +oo ) ) |
| 188 | 60 | adantr | |- ( ( ( ph /\ k e. NN ) /\ x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) ) -> ( 1 / k ) e. RR ) |
| 189 | 53 | adantr | |- ( ( ph /\ k e. NN ) -> F Fn RR ) |
| 190 | 189 55 | syl | |- ( ( ph /\ k e. NN ) -> ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) <-> ( x e. RR /\ ( F ` x ) e. ( ( 1 / k ) (,) +oo ) ) ) ) |
| 191 | 190 | biimpa | |- ( ( ( ph /\ k e. NN ) /\ x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) ) -> ( x e. RR /\ ( F ` x ) e. ( ( 1 / k ) (,) +oo ) ) ) |
| 192 | 191 | simpld | |- ( ( ( ph /\ k e. NN ) /\ x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) ) -> x e. RR ) |
| 193 | 49 | adantlr | |- ( ( ( ph /\ k e. NN ) /\ x e. RR ) -> ( F ` x ) e. RR ) |
| 194 | 192 193 | syldan | |- ( ( ( ph /\ k e. NN ) /\ x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) ) -> ( F ` x ) e. RR ) |
| 195 | 61 | adantr | |- ( ( ( ph /\ k e. NN ) /\ x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) ) -> ( 1 / k ) e. RR* ) |
| 196 | 191 | simprd | |- ( ( ( ph /\ k e. NN ) /\ x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) ) -> ( F ` x ) e. ( ( 1 / k ) (,) +oo ) ) |
| 197 | simpr | |- ( ( ( F ` x ) e. RR /\ ( 1 / k ) < ( F ` x ) ) -> ( 1 / k ) < ( F ` x ) ) |
|
| 198 | 63 197 | biimtrdi | |- ( ( 1 / k ) e. RR* -> ( ( F ` x ) e. ( ( 1 / k ) (,) +oo ) -> ( 1 / k ) < ( F ` x ) ) ) |
| 199 | 195 196 198 | sylc | |- ( ( ( ph /\ k e. NN ) /\ x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) ) -> ( 1 / k ) < ( F ` x ) ) |
| 200 | 188 194 199 | ltled | |- ( ( ( ph /\ k e. NN ) /\ x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) ) -> ( 1 / k ) <_ ( F ` x ) ) |
| 201 | 48 | simprd | |- ( ( ph /\ x e. RR ) -> 0 <_ ( F ` x ) ) |
| 202 | 201 | adantlr | |- ( ( ( ph /\ k e. NN ) /\ x e. RR ) -> 0 <_ ( F ` x ) ) |
| 203 | 192 202 | syldan | |- ( ( ( ph /\ k e. NN ) /\ x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) ) -> 0 <_ ( F ` x ) ) |
| 204 | breq1 | |- ( ( 1 / k ) = if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) -> ( ( 1 / k ) <_ ( F ` x ) <-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) <_ ( F ` x ) ) ) |
|
| 205 | breq1 | |- ( 0 = if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) -> ( 0 <_ ( F ` x ) <-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) <_ ( F ` x ) ) ) |
|
| 206 | 204 205 | ifboth | |- ( ( ( 1 / k ) <_ ( F ` x ) /\ 0 <_ ( F ` x ) ) -> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) <_ ( F ` x ) ) |
| 207 | 200 203 206 | syl2anc | |- ( ( ( ph /\ k e. NN ) /\ x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) ) -> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) <_ ( F ` x ) ) |
| 208 | 207 | adantlr | |- ( ( ( ( ph /\ k e. NN ) /\ x e. RR ) /\ x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) ) -> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) <_ ( F ` x ) ) |
| 209 | iffalse | |- ( -. x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) -> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) = 0 ) |
|
| 210 | 209 | adantl | |- ( ( ( ( ph /\ k e. NN ) /\ x e. RR ) /\ -. x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) ) -> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) = 0 ) |
| 211 | 202 | adantr | |- ( ( ( ( ph /\ k e. NN ) /\ x e. RR ) /\ -. x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) ) -> 0 <_ ( F ` x ) ) |
| 212 | 210 211 | eqbrtrd | |- ( ( ( ( ph /\ k e. NN ) /\ x e. RR ) /\ -. x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) ) -> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) <_ ( F ` x ) ) |
| 213 | 208 212 | pm2.61dan | |- ( ( ( ph /\ k e. NN ) /\ x e. RR ) -> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) <_ ( F ` x ) ) |
| 214 | 213 | ralrimiva | |- ( ( ph /\ k e. NN ) -> A. x e. RR if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) <_ ( F ` x ) ) |
| 215 | 214 | adantrr | |- ( ( ph /\ ( k e. NN /\ 0 < ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) ) ) -> A. x e. RR if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) <_ ( F ` x ) ) |
| 216 | reex | |- RR e. _V |
|
| 217 | 216 | a1i | |- ( ph -> RR e. _V ) |
| 218 | ovex | |- ( 1 / k ) e. _V |
|
| 219 | c0ex | |- 0 e. _V |
|
| 220 | 218 219 | ifex | |- if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) e. _V |
| 221 | 220 | a1i | |- ( ( ph /\ x e. RR ) -> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) e. _V ) |
| 222 | fvexd | |- ( ( ph /\ x e. RR ) -> ( F ` x ) e. _V ) |
|
| 223 | eqidd | |- ( ph -> ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) = ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) ) |
|
| 224 | 3 | feqmptd | |- ( ph -> F = ( x e. RR |-> ( F ` x ) ) ) |
| 225 | 217 221 222 223 224 | ofrfval2 | |- ( ph -> ( ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) oR <_ F <-> A. x e. RR if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) <_ ( F ` x ) ) ) |
| 226 | 225 | biimpar | |- ( ( ph /\ A. x e. RR if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) <_ ( F ` x ) ) -> ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) oR <_ F ) |
| 227 | 215 226 | syldan | |- ( ( ph /\ ( k e. NN /\ 0 < ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) ) ) -> ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) oR <_ F ) |
| 228 | itg2le | |- ( ( ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) : RR --> ( 0 [,] +oo ) /\ F : RR --> ( 0 [,] +oo ) /\ ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) oR <_ F ) -> ( S.2 ` ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) ) <_ ( S.2 ` F ) ) |
|
| 229 | 146 187 227 228 | syl3anc | |- ( ( ph /\ ( k e. NN /\ 0 < ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) ) ) -> ( S.2 ` ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) ) <_ ( S.2 ` F ) ) |
| 230 | 132 148 154 186 229 | xrltletrd | |- ( ( ph /\ ( k e. NN /\ 0 < ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) ) ) -> 0 < ( S.2 ` F ) ) |
| 231 | 230 | expr | |- ( ( ph /\ k e. NN ) -> ( 0 < ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) -> 0 < ( S.2 ` F ) ) ) |
| 232 | 231 | con3d | |- ( ( ph /\ k e. NN ) -> ( -. 0 < ( S.2 ` F ) -> -. 0 < ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) ) ) |
| 233 | 7 | ffvelcdmi | |- ( ( `' F " ( ( 1 / k ) (,) +oo ) ) e. dom vol -> ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) e. ( 0 [,] +oo ) ) |
| 234 | 6 233 | sselid | |- ( ( `' F " ( ( 1 / k ) (,) +oo ) ) e. dom vol -> ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) e. RR* ) |
| 235 | 157 234 | syl | |- ( ( ph /\ k e. NN ) -> ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) e. RR* ) |
| 236 | xrlenlt | |- ( ( ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) e. RR* /\ 0 e. RR* ) -> ( ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) <_ 0 <-> -. 0 < ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) ) ) |
|
| 237 | 235 39 236 | sylancl | |- ( ( ph /\ k e. NN ) -> ( ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) <_ 0 <-> -. 0 < ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) ) ) |
| 238 | 232 237 | sylibrd | |- ( ( ph /\ k e. NN ) -> ( -. 0 < ( S.2 ` F ) -> ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) <_ 0 ) ) |
| 239 | 238 | imp | |- ( ( ( ph /\ k e. NN ) /\ -. 0 < ( S.2 ` F ) ) -> ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) <_ 0 ) |
| 240 | 239 | an32s | |- ( ( ( ph /\ -. 0 < ( S.2 ` F ) ) /\ k e. NN ) -> ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) <_ 0 ) |
| 241 | 131 240 | eqbrtrd | |- ( ( ( ph /\ -. 0 < ( S.2 ` F ) ) /\ k e. NN ) -> ( vol ` ( ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ` k ) ) <_ 0 ) |
| 242 | 241 | ralrimiva | |- ( ( ph /\ -. 0 < ( S.2 ` F ) ) -> A. k e. NN ( vol ` ( ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ` k ) ) <_ 0 ) |
| 243 | ffn | |- ( ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) : NN --> _V -> ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) Fn NN ) |
|
| 244 | fveq2 | |- ( z = ( ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ` k ) -> ( vol ` z ) = ( vol ` ( ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ` k ) ) ) |
|
| 245 | 244 | breq1d | |- ( z = ( ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ` k ) -> ( ( vol ` z ) <_ 0 <-> ( vol ` ( ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ` k ) ) <_ 0 ) ) |
| 246 | 245 | ralrn | |- ( ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) Fn NN -> ( A. z e. ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ( vol ` z ) <_ 0 <-> A. k e. NN ( vol ` ( ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ` k ) ) <_ 0 ) ) |
| 247 | 18 243 246 | 3syl | |- ( ph -> ( A. z e. ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ( vol ` z ) <_ 0 <-> A. k e. NN ( vol ` ( ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ` k ) ) <_ 0 ) ) |
| 248 | 247 | adantr | |- ( ( ph /\ -. 0 < ( S.2 ` F ) ) -> ( A. z e. ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ( vol ` z ) <_ 0 <-> A. k e. NN ( vol ` ( ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ` k ) ) <_ 0 ) ) |
| 249 | 242 248 | mpbird | |- ( ( ph /\ -. 0 < ( S.2 ` F ) ) -> A. z e. ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ( vol ` z ) <_ 0 ) |
| 250 | ffn | |- ( vol : dom vol --> ( 0 [,] +oo ) -> vol Fn dom vol ) |
|
| 251 | 7 250 | ax-mp | |- vol Fn dom vol |
| 252 | 28 | frnd | |- ( ph -> ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) C_ dom vol ) |
| 253 | 252 | adantr | |- ( ( ph /\ -. 0 < ( S.2 ` F ) ) -> ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) C_ dom vol ) |
| 254 | breq1 | |- ( x = ( vol ` z ) -> ( x <_ 0 <-> ( vol ` z ) <_ 0 ) ) |
|
| 255 | 254 | ralima | |- ( ( vol Fn dom vol /\ ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) C_ dom vol ) -> ( A. x e. ( vol " ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ) x <_ 0 <-> A. z e. ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ( vol ` z ) <_ 0 ) ) |
| 256 | 251 253 255 | sylancr | |- ( ( ph /\ -. 0 < ( S.2 ` F ) ) -> ( A. x e. ( vol " ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ) x <_ 0 <-> A. z e. ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ( vol ` z ) <_ 0 ) ) |
| 257 | 249 256 | mpbird | |- ( ( ph /\ -. 0 < ( S.2 ` F ) ) -> A. x e. ( vol " ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ) x <_ 0 ) |
| 258 | imassrn | |- ( vol " ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ) C_ ran vol |
|
| 259 | frn | |- ( vol : dom vol --> ( 0 [,] +oo ) -> ran vol C_ ( 0 [,] +oo ) ) |
|
| 260 | 7 259 | ax-mp | |- ran vol C_ ( 0 [,] +oo ) |
| 261 | 260 6 | sstri | |- ran vol C_ RR* |
| 262 | 258 261 | sstri | |- ( vol " ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ) C_ RR* |
| 263 | supxrleub | |- ( ( ( vol " ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ) C_ RR* /\ 0 e. RR* ) -> ( sup ( ( vol " ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ) , RR* , < ) <_ 0 <-> A. x e. ( vol " ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ) x <_ 0 ) ) |
|
| 264 | 262 39 263 | mp2an | |- ( sup ( ( vol " ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ) , RR* , < ) <_ 0 <-> A. x e. ( vol " ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ) x <_ 0 ) |
| 265 | 257 264 | sylibr | |- ( ( ph /\ -. 0 < ( S.2 ` F ) ) -> sup ( ( vol " ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ) , RR* , < ) <_ 0 ) |
| 266 | 128 265 | eqbrtrd | |- ( ( ph /\ -. 0 < ( S.2 ` F ) ) -> ( vol* ` U. ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ) <_ 0 ) |
| 267 | 11 38 40 93 266 | xrletrd | |- ( ( ph /\ -. 0 < ( S.2 ` F ) ) -> ( vol ` A ) <_ 0 ) |
| 268 | 267 | ex | |- ( ph -> ( -. 0 < ( S.2 ` F ) -> ( vol ` A ) <_ 0 ) ) |
| 269 | xrlenlt | |- ( ( ( vol ` A ) e. RR* /\ 0 e. RR* ) -> ( ( vol ` A ) <_ 0 <-> -. 0 < ( vol ` A ) ) ) |
|
| 270 | 10 39 269 | sylancl | |- ( ph -> ( ( vol ` A ) <_ 0 <-> -. 0 < ( vol ` A ) ) ) |
| 271 | 268 270 | sylibd | |- ( ph -> ( -. 0 < ( S.2 ` F ) -> -. 0 < ( vol ` A ) ) ) |
| 272 | 2 271 | mt4d | |- ( ph -> 0 < ( S.2 ` F ) ) |