This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for itgcn . (Contributed by Mario Carneiro, 30-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itg2cn.1 | ⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ) | |
| itg2cn.2 | ⊢ ( 𝜑 → 𝐹 ∈ MblFn ) | ||
| itg2cn.3 | ⊢ ( 𝜑 → ( ∫2 ‘ 𝐹 ) ∈ ℝ ) | ||
| Assertion | itg2cnlem1 | ⊢ ( 𝜑 → sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) , ℝ* , < ) = ( ∫2 ‘ 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itg2cn.1 | ⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ) | |
| 2 | itg2cn.2 | ⊢ ( 𝜑 → 𝐹 ∈ MblFn ) | |
| 3 | itg2cn.3 | ⊢ ( 𝜑 → ( ∫2 ‘ 𝐹 ) ∈ ℝ ) | |
| 4 | fvex | ⊢ ( 𝐹 ‘ 𝑥 ) ∈ V | |
| 5 | c0ex | ⊢ 0 ∈ V | |
| 6 | 4 5 | ifex | ⊢ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ∈ V |
| 7 | eqid | ⊢ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) | |
| 8 | 7 | fvmpt2 | ⊢ ( ( 𝑥 ∈ ℝ ∧ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ∈ V ) → ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑥 ) = if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
| 9 | 6 8 | mpan2 | ⊢ ( 𝑥 ∈ ℝ → ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑥 ) = if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
| 10 | 9 | mpteq2dv | ⊢ ( 𝑥 ∈ ℝ → ( 𝑛 ∈ ℕ ↦ ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑥 ) ) = ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
| 11 | 10 | rneqd | ⊢ ( 𝑥 ∈ ℝ → ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑥 ) ) = ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
| 12 | 11 | supeq1d | ⊢ ( 𝑥 ∈ ℝ → sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑥 ) ) , ℝ , < ) = sup ( ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , ℝ , < ) ) |
| 13 | 12 | mpteq2ia | ⊢ ( 𝑥 ∈ ℝ ↦ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑥 ) ) , ℝ , < ) ) = ( 𝑥 ∈ ℝ ↦ sup ( ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , ℝ , < ) ) |
| 14 | nfcv | ⊢ Ⅎ 𝑦 sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑥 ) ) , ℝ , < ) | |
| 15 | nfcv | ⊢ Ⅎ 𝑥 ℕ | |
| 16 | nfmpt1 | ⊢ Ⅎ 𝑥 ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) | |
| 17 | 15 16 | nfmpt | ⊢ Ⅎ 𝑥 ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
| 18 | nfcv | ⊢ Ⅎ 𝑥 𝑚 | |
| 19 | 17 18 | nffv | ⊢ Ⅎ 𝑥 ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) |
| 20 | nfcv | ⊢ Ⅎ 𝑥 𝑦 | |
| 21 | 19 20 | nffv | ⊢ Ⅎ 𝑥 ( ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) ‘ 𝑦 ) |
| 22 | 15 21 | nfmpt | ⊢ Ⅎ 𝑥 ( 𝑚 ∈ ℕ ↦ ( ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) ‘ 𝑦 ) ) |
| 23 | 22 | nfrn | ⊢ Ⅎ 𝑥 ran ( 𝑚 ∈ ℕ ↦ ( ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) ‘ 𝑦 ) ) |
| 24 | nfcv | ⊢ Ⅎ 𝑥 ℝ | |
| 25 | nfcv | ⊢ Ⅎ 𝑥 < | |
| 26 | 23 24 25 | nfsup | ⊢ Ⅎ 𝑥 sup ( ran ( 𝑚 ∈ ℕ ↦ ( ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) ‘ 𝑦 ) ) , ℝ , < ) |
| 27 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑥 ) = ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑦 ) ) | |
| 28 | 27 | mpteq2dv | ⊢ ( 𝑥 = 𝑦 → ( 𝑛 ∈ ℕ ↦ ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑥 ) ) = ( 𝑛 ∈ ℕ ↦ ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑦 ) ) ) |
| 29 | breq2 | ⊢ ( 𝑛 = 𝑚 → ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 ↔ ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 ) ) | |
| 30 | 29 | ifbid | ⊢ ( 𝑛 = 𝑚 → if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) = if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
| 31 | 30 | mpteq2dv | ⊢ ( 𝑛 = 𝑚 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
| 32 | 31 | fveq1d | ⊢ ( 𝑛 = 𝑚 → ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑦 ) = ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑦 ) ) |
| 33 | 32 | cbvmptv | ⊢ ( 𝑛 ∈ ℕ ↦ ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑦 ) ) = ( 𝑚 ∈ ℕ ↦ ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑦 ) ) |
| 34 | eqid | ⊢ ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) | |
| 35 | reex | ⊢ ℝ ∈ V | |
| 36 | 35 | mptex | ⊢ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ∈ V |
| 37 | 31 34 36 | fvmpt | ⊢ ( 𝑚 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
| 38 | 37 | fveq1d | ⊢ ( 𝑚 ∈ ℕ → ( ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) ‘ 𝑦 ) = ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑦 ) ) |
| 39 | 38 | mpteq2ia | ⊢ ( 𝑚 ∈ ℕ ↦ ( ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) ‘ 𝑦 ) ) = ( 𝑚 ∈ ℕ ↦ ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑦 ) ) |
| 40 | 33 39 | eqtr4i | ⊢ ( 𝑛 ∈ ℕ ↦ ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑦 ) ) = ( 𝑚 ∈ ℕ ↦ ( ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) ‘ 𝑦 ) ) |
| 41 | 28 40 | eqtrdi | ⊢ ( 𝑥 = 𝑦 → ( 𝑛 ∈ ℕ ↦ ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑥 ) ) = ( 𝑚 ∈ ℕ ↦ ( ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) ‘ 𝑦 ) ) ) |
| 42 | 41 | rneqd | ⊢ ( 𝑥 = 𝑦 → ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑥 ) ) = ran ( 𝑚 ∈ ℕ ↦ ( ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) ‘ 𝑦 ) ) ) |
| 43 | 42 | supeq1d | ⊢ ( 𝑥 = 𝑦 → sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑥 ) ) , ℝ , < ) = sup ( ran ( 𝑚 ∈ ℕ ↦ ( ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) ‘ 𝑦 ) ) , ℝ , < ) ) |
| 44 | 14 26 43 | cbvmpt | ⊢ ( 𝑥 ∈ ℝ ↦ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑥 ) ) , ℝ , < ) ) = ( 𝑦 ∈ ℝ ↦ sup ( ran ( 𝑚 ∈ ℕ ↦ ( ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) ‘ 𝑦 ) ) , ℝ , < ) ) |
| 45 | 13 44 | eqtr3i | ⊢ ( 𝑥 ∈ ℝ ↦ sup ( ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , ℝ , < ) ) = ( 𝑦 ∈ ℝ ↦ sup ( ran ( 𝑚 ∈ ℕ ↦ ( ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) ‘ 𝑦 ) ) , ℝ , < ) ) |
| 46 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) | |
| 47 | 46 | breq1d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 ↔ ( 𝐹 ‘ 𝑦 ) ≤ 𝑚 ) ) |
| 48 | 47 46 | ifbieq1d | ⊢ ( 𝑥 = 𝑦 → if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) = if ( ( 𝐹 ‘ 𝑦 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑦 ) , 0 ) ) |
| 49 | 48 | cbvmptv | ⊢ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) = ( 𝑦 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑦 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑦 ) , 0 ) ) |
| 50 | 37 | adantl | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
| 51 | nnre | ⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℝ ) | |
| 52 | 51 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → 𝑚 ∈ ℝ ) |
| 53 | 52 | rexrd | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → 𝑚 ∈ ℝ* ) |
| 54 | elioopnf | ⊢ ( 𝑚 ∈ ℝ* → ( ( 𝐹 ‘ 𝑦 ) ∈ ( 𝑚 (,) +∞ ) ↔ ( ( 𝐹 ‘ 𝑦 ) ∈ ℝ ∧ 𝑚 < ( 𝐹 ‘ 𝑦 ) ) ) ) | |
| 55 | 53 54 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑦 ) ∈ ( 𝑚 (,) +∞ ) ↔ ( ( 𝐹 ‘ 𝑦 ) ∈ ℝ ∧ 𝑚 < ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 56 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℝ ) | |
| 57 | 1 | ffnd | ⊢ ( 𝜑 → 𝐹 Fn ℝ ) |
| 58 | 57 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → 𝐹 Fn ℝ ) |
| 59 | elpreima | ⊢ ( 𝐹 Fn ℝ → ( 𝑦 ∈ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ↔ ( 𝑦 ∈ ℝ ∧ ( 𝐹 ‘ 𝑦 ) ∈ ( 𝑚 (,) +∞ ) ) ) ) | |
| 60 | 58 59 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → ( 𝑦 ∈ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ↔ ( 𝑦 ∈ ℝ ∧ ( 𝐹 ‘ 𝑦 ) ∈ ( 𝑚 (,) +∞ ) ) ) ) |
| 61 | 56 60 | mpbirand | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → ( 𝑦 ∈ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ↔ ( 𝐹 ‘ 𝑦 ) ∈ ( 𝑚 (,) +∞ ) ) ) |
| 62 | rge0ssre | ⊢ ( 0 [,) +∞ ) ⊆ ℝ | |
| 63 | fss | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ∧ ( 0 [,) +∞ ) ⊆ ℝ ) → 𝐹 : ℝ ⟶ ℝ ) | |
| 64 | 1 62 63 | sylancl | ⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℝ ) |
| 65 | 64 | adantr | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝐹 : ℝ ⟶ ℝ ) |
| 66 | 65 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) |
| 67 | 66 | biantrurd | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → ( 𝑚 < ( 𝐹 ‘ 𝑦 ) ↔ ( ( 𝐹 ‘ 𝑦 ) ∈ ℝ ∧ 𝑚 < ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 68 | 55 61 67 | 3bitr4d | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → ( 𝑦 ∈ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ↔ 𝑚 < ( 𝐹 ‘ 𝑦 ) ) ) |
| 69 | 68 | notbid | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → ( ¬ 𝑦 ∈ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ↔ ¬ 𝑚 < ( 𝐹 ‘ 𝑦 ) ) ) |
| 70 | eldif | ⊢ ( 𝑦 ∈ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ↔ ( 𝑦 ∈ ℝ ∧ ¬ 𝑦 ∈ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ) | |
| 71 | 70 | baib | ⊢ ( 𝑦 ∈ ℝ → ( 𝑦 ∈ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ↔ ¬ 𝑦 ∈ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ) |
| 72 | 71 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → ( 𝑦 ∈ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ↔ ¬ 𝑦 ∈ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ) |
| 73 | 66 52 | lenltd | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑦 ) ≤ 𝑚 ↔ ¬ 𝑚 < ( 𝐹 ‘ 𝑦 ) ) ) |
| 74 | 69 72 73 | 3bitr4d | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → ( 𝑦 ∈ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ↔ ( 𝐹 ‘ 𝑦 ) ≤ 𝑚 ) ) |
| 75 | 74 | ifbid | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → if ( 𝑦 ∈ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) , ( 𝐹 ‘ 𝑦 ) , 0 ) = if ( ( 𝐹 ‘ 𝑦 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑦 ) , 0 ) ) |
| 76 | 75 | mpteq2dva | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑦 ∈ ℝ ↦ if ( 𝑦 ∈ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) , ( 𝐹 ‘ 𝑦 ) , 0 ) ) = ( 𝑦 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑦 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑦 ) , 0 ) ) ) |
| 77 | 49 50 76 | 3eqtr4a | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) = ( 𝑦 ∈ ℝ ↦ if ( 𝑦 ∈ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) , ( 𝐹 ‘ 𝑦 ) , 0 ) ) ) |
| 78 | difss | ⊢ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ⊆ ℝ | |
| 79 | 78 | a1i | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ⊆ ℝ ) |
| 80 | rembl | ⊢ ℝ ∈ dom vol | |
| 81 | 80 | a1i | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ℝ ∈ dom vol ) |
| 82 | fvex | ⊢ ( 𝐹 ‘ 𝑦 ) ∈ V | |
| 83 | 82 5 | ifex | ⊢ if ( 𝑦 ∈ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) , ( 𝐹 ‘ 𝑦 ) , 0 ) ∈ V |
| 84 | 83 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ) → if ( 𝑦 ∈ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) , ( 𝐹 ‘ 𝑦 ) , 0 ) ∈ V ) |
| 85 | eldifn | ⊢ ( 𝑦 ∈ ( ℝ ∖ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ) → ¬ 𝑦 ∈ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ) | |
| 86 | 85 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ ( ℝ ∖ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ) ) → ¬ 𝑦 ∈ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ) |
| 87 | 86 | iffalsed | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ ( ℝ ∖ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ) ) → if ( 𝑦 ∈ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) , ( 𝐹 ‘ 𝑦 ) , 0 ) = 0 ) |
| 88 | iftrue | ⊢ ( 𝑦 ∈ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) → if ( 𝑦 ∈ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) , ( 𝐹 ‘ 𝑦 ) , 0 ) = ( 𝐹 ‘ 𝑦 ) ) | |
| 89 | 88 | mpteq2ia | ⊢ ( 𝑦 ∈ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ↦ if ( 𝑦 ∈ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) , ( 𝐹 ‘ 𝑦 ) , 0 ) ) = ( 𝑦 ∈ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ↦ ( 𝐹 ‘ 𝑦 ) ) |
| 90 | resmpt | ⊢ ( ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ⊆ ℝ → ( ( 𝑦 ∈ ℝ ↦ ( 𝐹 ‘ 𝑦 ) ) ↾ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ) = ( 𝑦 ∈ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ↦ ( 𝐹 ‘ 𝑦 ) ) ) | |
| 91 | 78 90 | ax-mp | ⊢ ( ( 𝑦 ∈ ℝ ↦ ( 𝐹 ‘ 𝑦 ) ) ↾ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ) = ( 𝑦 ∈ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ↦ ( 𝐹 ‘ 𝑦 ) ) |
| 92 | 89 91 | eqtr4i | ⊢ ( 𝑦 ∈ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ↦ if ( 𝑦 ∈ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) , ( 𝐹 ‘ 𝑦 ) , 0 ) ) = ( ( 𝑦 ∈ ℝ ↦ ( 𝐹 ‘ 𝑦 ) ) ↾ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ) |
| 93 | 1 | feqmptd | ⊢ ( 𝜑 → 𝐹 = ( 𝑦 ∈ ℝ ↦ ( 𝐹 ‘ 𝑦 ) ) ) |
| 94 | 93 2 | eqeltrrd | ⊢ ( 𝜑 → ( 𝑦 ∈ ℝ ↦ ( 𝐹 ‘ 𝑦 ) ) ∈ MblFn ) |
| 95 | mbfima | ⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : ℝ ⟶ ℝ ) → ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ∈ dom vol ) | |
| 96 | 2 64 95 | syl2anc | ⊢ ( 𝜑 → ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ∈ dom vol ) |
| 97 | cmmbl | ⊢ ( ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ∈ dom vol → ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ∈ dom vol ) | |
| 98 | 96 97 | syl | ⊢ ( 𝜑 → ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ∈ dom vol ) |
| 99 | mbfres | ⊢ ( ( ( 𝑦 ∈ ℝ ↦ ( 𝐹 ‘ 𝑦 ) ) ∈ MblFn ∧ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ∈ dom vol ) → ( ( 𝑦 ∈ ℝ ↦ ( 𝐹 ‘ 𝑦 ) ) ↾ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ) ∈ MblFn ) | |
| 100 | 94 98 99 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑦 ∈ ℝ ↦ ( 𝐹 ‘ 𝑦 ) ) ↾ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ) ∈ MblFn ) |
| 101 | 92 100 | eqeltrid | ⊢ ( 𝜑 → ( 𝑦 ∈ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ↦ if ( 𝑦 ∈ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) , ( 𝐹 ‘ 𝑦 ) , 0 ) ) ∈ MblFn ) |
| 102 | 101 | adantr | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑦 ∈ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ↦ if ( 𝑦 ∈ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) , ( 𝐹 ‘ 𝑦 ) , 0 ) ) ∈ MblFn ) |
| 103 | 79 81 84 87 102 | mbfss | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑦 ∈ ℝ ↦ if ( 𝑦 ∈ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) , ( 𝐹 ‘ 𝑦 ) , 0 ) ) ∈ MblFn ) |
| 104 | 77 103 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) ∈ MblFn ) |
| 105 | 1 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ) |
| 106 | 0e0icopnf | ⊢ 0 ∈ ( 0 [,) +∞ ) | |
| 107 | ifcl | ⊢ ( ( ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ∧ 0 ∈ ( 0 [,) +∞ ) ) → if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ∈ ( 0 [,) +∞ ) ) | |
| 108 | 105 106 107 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ∈ ( 0 [,) +∞ ) ) |
| 109 | 108 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ∈ ( 0 [,) +∞ ) ) |
| 110 | 50 109 | fmpt3d | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 111 | elrege0 | ⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( 𝐹 ‘ 𝑥 ) ) ) | |
| 112 | 105 111 | sylib | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 113 | 112 | simpld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 114 | 113 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 115 | 114 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 116 | 115 | leidd | ⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 ) → ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 117 | iftrue | ⊢ ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 → if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 118 | 117 | adantl | ⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 ) → if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 119 | 51 | ad3antlr | ⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 ) → 𝑚 ∈ ℝ ) |
| 120 | peano2re | ⊢ ( 𝑚 ∈ ℝ → ( 𝑚 + 1 ) ∈ ℝ ) | |
| 121 | 119 120 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 ) → ( 𝑚 + 1 ) ∈ ℝ ) |
| 122 | simpr | ⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 ) → ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 ) | |
| 123 | 119 | lep1d | ⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 ) → 𝑚 ≤ ( 𝑚 + 1 ) ) |
| 124 | 115 119 121 122 123 | letrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 ) → ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑚 + 1 ) ) |
| 125 | 124 | iftrued | ⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 ) → if ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑚 + 1 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 126 | 116 118 125 | 3brtr4d | ⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 ) → if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ≤ if ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑚 + 1 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
| 127 | iffalse | ⊢ ( ¬ ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 → if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) = 0 ) | |
| 128 | 127 | adantl | ⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ¬ ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 ) → if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) = 0 ) |
| 129 | 112 | simprd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 0 ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 130 | 0le0 | ⊢ 0 ≤ 0 | |
| 131 | breq2 | ⊢ ( ( 𝐹 ‘ 𝑥 ) = if ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑚 + 1 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) → ( 0 ≤ ( 𝐹 ‘ 𝑥 ) ↔ 0 ≤ if ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑚 + 1 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) | |
| 132 | breq2 | ⊢ ( 0 = if ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑚 + 1 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) → ( 0 ≤ 0 ↔ 0 ≤ if ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑚 + 1 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) | |
| 133 | 131 132 | ifboth | ⊢ ( ( 0 ≤ ( 𝐹 ‘ 𝑥 ) ∧ 0 ≤ 0 ) → 0 ≤ if ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑚 + 1 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
| 134 | 129 130 133 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 0 ≤ if ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑚 + 1 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
| 135 | 134 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 0 ≤ if ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑚 + 1 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
| 136 | 135 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ¬ ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 ) → 0 ≤ if ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑚 + 1 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
| 137 | 128 136 | eqbrtrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ¬ ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 ) → if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ≤ if ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑚 + 1 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
| 138 | 126 137 | pm2.61dan | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ≤ if ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑚 + 1 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
| 139 | 138 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ∀ 𝑥 ∈ ℝ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ≤ if ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑚 + 1 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
| 140 | 4 5 | ifex | ⊢ if ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑚 + 1 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ∈ V |
| 141 | 140 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → if ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑚 + 1 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ∈ V ) |
| 142 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) | |
| 143 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑚 + 1 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑚 + 1 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) | |
| 144 | 81 109 141 142 143 | ofrfval2 | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑚 + 1 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ↔ ∀ 𝑥 ∈ ℝ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ≤ if ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑚 + 1 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
| 145 | 139 144 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑚 + 1 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
| 146 | peano2nn | ⊢ ( 𝑚 ∈ ℕ → ( 𝑚 + 1 ) ∈ ℕ ) | |
| 147 | 146 | adantl | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑚 + 1 ) ∈ ℕ ) |
| 148 | breq2 | ⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 ↔ ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑚 + 1 ) ) ) | |
| 149 | 148 | ifbid | ⊢ ( 𝑛 = ( 𝑚 + 1 ) → if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) = if ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑚 + 1 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
| 150 | 149 | mpteq2dv | ⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑚 + 1 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
| 151 | 35 | mptex | ⊢ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑚 + 1 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ∈ V |
| 152 | 150 34 151 | fvmpt | ⊢ ( ( 𝑚 + 1 ) ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ ( 𝑚 + 1 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑚 + 1 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
| 153 | 147 152 | syl | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ ( 𝑚 + 1 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑚 + 1 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
| 154 | 145 50 153 | 3brtr4d | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) ∘r ≤ ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ ( 𝑚 + 1 ) ) ) |
| 155 | 64 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) |
| 156 | 37 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
| 157 | 156 | fveq1d | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑚 ∈ ℕ ) → ( ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) ‘ 𝑦 ) = ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑦 ) ) |
| 158 | 113 | leidd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 159 | breq1 | ⊢ ( ( 𝐹 ‘ 𝑥 ) = if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) → ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑥 ) ↔ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) | |
| 160 | breq1 | ⊢ ( 0 = if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) → ( 0 ≤ ( 𝐹 ‘ 𝑥 ) ↔ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) | |
| 161 | 159 160 | ifboth | ⊢ ( ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑥 ) ∧ 0 ≤ ( 𝐹 ‘ 𝑥 ) ) → if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 162 | 158 129 161 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 163 | 162 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 164 | 163 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ∀ 𝑥 ∈ ℝ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 165 | 35 | a1i | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ℝ ∈ V ) |
| 166 | 4 5 | ifex | ⊢ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ∈ V |
| 167 | 166 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ∈ V ) |
| 168 | 1 | feqmptd | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ ℝ ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 169 | 168 | adantr | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝐹 = ( 𝑥 ∈ ℝ ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 170 | 165 167 114 142 169 | ofrfval2 | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ∘r ≤ 𝐹 ↔ ∀ 𝑥 ∈ ℝ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 171 | 164 170 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ∘r ≤ 𝐹 ) |
| 172 | 167 | fmpttd | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) : ℝ ⟶ V ) |
| 173 | 172 | ffnd | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) Fn ℝ ) |
| 174 | 57 | adantr | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝐹 Fn ℝ ) |
| 175 | inidm | ⊢ ( ℝ ∩ ℝ ) = ℝ | |
| 176 | eqidd | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑦 ) = ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑦 ) ) | |
| 177 | eqidd | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) | |
| 178 | 173 174 165 165 175 176 177 | ofrfval | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ∘r ≤ 𝐹 ↔ ∀ 𝑦 ∈ ℝ ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) |
| 179 | 171 178 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ∀ 𝑦 ∈ ℝ ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑦 ) ) |
| 180 | 179 | r19.21bi | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑦 ) ) |
| 181 | 180 | an32s | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑦 ) ) |
| 182 | 157 181 | eqbrtrd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑚 ∈ ℕ ) → ( ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑦 ) ) |
| 183 | 182 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ∀ 𝑚 ∈ ℕ ( ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑦 ) ) |
| 184 | brralrspcev | ⊢ ( ( ( 𝐹 ‘ 𝑦 ) ∈ ℝ ∧ ∀ 𝑚 ∈ ℕ ( ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑦 ) ) → ∃ 𝑧 ∈ ℝ ∀ 𝑚 ∈ ℕ ( ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) ‘ 𝑦 ) ≤ 𝑧 ) | |
| 185 | 155 183 184 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ∃ 𝑧 ∈ ℝ ∀ 𝑚 ∈ ℕ ( ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) ‘ 𝑦 ) ≤ 𝑧 ) |
| 186 | 31 | fveq2d | ⊢ ( 𝑛 = 𝑚 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) |
| 187 | 186 | cbvmptv | ⊢ ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) = ( 𝑚 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) |
| 188 | 37 | fveq2d | ⊢ ( 𝑚 ∈ ℕ → ( ∫2 ‘ ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) |
| 189 | 188 | mpteq2ia | ⊢ ( 𝑚 ∈ ℕ ↦ ( ∫2 ‘ ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) ) ) = ( 𝑚 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) |
| 190 | 187 189 | eqtr4i | ⊢ ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) = ( 𝑚 ∈ ℕ ↦ ( ∫2 ‘ ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) ) ) |
| 191 | 190 | rneqi | ⊢ ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) = ran ( 𝑚 ∈ ℕ ↦ ( ∫2 ‘ ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) ) ) |
| 192 | 191 | supeq1i | ⊢ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) , ℝ* , < ) = sup ( ran ( 𝑚 ∈ ℕ ↦ ( ∫2 ‘ ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) ) ) , ℝ* , < ) |
| 193 | 45 104 110 154 185 192 | itg2mono | ⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ sup ( ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , ℝ , < ) ) ) = sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) , ℝ* , < ) ) |
| 194 | eqid | ⊢ ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) = ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) | |
| 195 | 30 194 166 | fvmpt | ⊢ ( 𝑚 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑚 ) = if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
| 196 | 195 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑚 ) = if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
| 197 | 162 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑚 ∈ ℕ ) → if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 198 | 196 197 | eqbrtrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑚 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 199 | 198 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ∀ 𝑚 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑚 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 200 | 6 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑛 ∈ ℕ ) → if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ∈ V ) |
| 201 | 200 | fmpttd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) : ℕ ⟶ V ) |
| 202 | 201 | ffnd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) Fn ℕ ) |
| 203 | breq1 | ⊢ ( 𝑤 = ( ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑚 ) → ( 𝑤 ≤ ( 𝐹 ‘ 𝑥 ) ↔ ( ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑚 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) | |
| 204 | 203 | ralrn | ⊢ ( ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) Fn ℕ → ( ∀ 𝑤 ∈ ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) 𝑤 ≤ ( 𝐹 ‘ 𝑥 ) ↔ ∀ 𝑚 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑚 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 205 | 202 204 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ∀ 𝑤 ∈ ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) 𝑤 ≤ ( 𝐹 ‘ 𝑥 ) ↔ ∀ 𝑚 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑚 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 206 | 199 205 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ∀ 𝑤 ∈ ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) 𝑤 ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 207 | 113 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 208 | 0re | ⊢ 0 ∈ ℝ | |
| 209 | ifcl | ⊢ ( ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ 0 ∈ ℝ ) → if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ∈ ℝ ) | |
| 210 | 207 208 209 | sylancl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑛 ∈ ℕ ) → if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ∈ ℝ ) |
| 211 | 210 | fmpttd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) : ℕ ⟶ ℝ ) |
| 212 | 211 | frnd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ⊆ ℝ ) |
| 213 | 1nn | ⊢ 1 ∈ ℕ | |
| 214 | 194 210 | dmmptd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → dom ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) = ℕ ) |
| 215 | 213 214 | eleqtrrid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 1 ∈ dom ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
| 216 | n0i | ⊢ ( 1 ∈ dom ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) → ¬ dom ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) = ∅ ) | |
| 217 | dm0rn0 | ⊢ ( dom ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) = ∅ ↔ ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) = ∅ ) | |
| 218 | 217 | necon3bbii | ⊢ ( ¬ dom ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) = ∅ ↔ ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ≠ ∅ ) |
| 219 | 216 218 | sylib | ⊢ ( 1 ∈ dom ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) → ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ≠ ∅ ) |
| 220 | 215 219 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ≠ ∅ ) |
| 221 | brralrspcev | ⊢ ( ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ ∀ 𝑤 ∈ ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) 𝑤 ≤ ( 𝐹 ‘ 𝑥 ) ) → ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) 𝑤 ≤ 𝑧 ) | |
| 222 | 113 206 221 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) 𝑤 ≤ 𝑧 ) |
| 223 | suprleub | ⊢ ( ( ( ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ⊆ ℝ ∧ ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ≠ ∅ ∧ ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) 𝑤 ≤ 𝑧 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) → ( sup ( ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , ℝ , < ) ≤ ( 𝐹 ‘ 𝑥 ) ↔ ∀ 𝑤 ∈ ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) 𝑤 ≤ ( 𝐹 ‘ 𝑥 ) ) ) | |
| 224 | 212 220 222 113 223 | syl31anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( sup ( ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , ℝ , < ) ≤ ( 𝐹 ‘ 𝑥 ) ↔ ∀ 𝑤 ∈ ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) 𝑤 ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 225 | 206 224 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → sup ( ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , ℝ , < ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 226 | arch | ⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ → ∃ 𝑚 ∈ ℕ ( 𝐹 ‘ 𝑥 ) < 𝑚 ) | |
| 227 | 113 226 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ∃ 𝑚 ∈ ℕ ( 𝐹 ‘ 𝑥 ) < 𝑚 ) |
| 228 | 195 | ad2antrl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑚 ∈ ℕ ∧ ( 𝐹 ‘ 𝑥 ) < 𝑚 ) ) → ( ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑚 ) = if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
| 229 | ltle | ⊢ ( ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ 𝑚 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑥 ) < 𝑚 → ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 ) ) | |
| 230 | 113 51 229 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑥 ) < 𝑚 → ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 ) ) |
| 231 | 230 | impr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑚 ∈ ℕ ∧ ( 𝐹 ‘ 𝑥 ) < 𝑚 ) ) → ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 ) |
| 232 | 231 | iftrued | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑚 ∈ ℕ ∧ ( 𝐹 ‘ 𝑥 ) < 𝑚 ) ) → if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 233 | 228 232 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑚 ∈ ℕ ∧ ( 𝐹 ‘ 𝑥 ) < 𝑚 ) ) → ( ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑚 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 234 | 202 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑚 ∈ ℕ ∧ ( 𝐹 ‘ 𝑥 ) < 𝑚 ) ) → ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) Fn ℕ ) |
| 235 | simprl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑚 ∈ ℕ ∧ ( 𝐹 ‘ 𝑥 ) < 𝑚 ) ) → 𝑚 ∈ ℕ ) | |
| 236 | fnfvelrn | ⊢ ( ( ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) Fn ℕ ∧ 𝑚 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑚 ) ∈ ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) | |
| 237 | 234 235 236 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑚 ∈ ℕ ∧ ( 𝐹 ‘ 𝑥 ) < 𝑚 ) ) → ( ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑚 ) ∈ ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
| 238 | 233 237 | eqeltrrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑚 ∈ ℕ ∧ ( 𝐹 ‘ 𝑥 ) < 𝑚 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
| 239 | 227 238 | rexlimddv | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
| 240 | 212 220 222 239 | suprubd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ≤ sup ( ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , ℝ , < ) ) |
| 241 | 212 220 222 | suprcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → sup ( ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , ℝ , < ) ∈ ℝ ) |
| 242 | 241 113 | letri3d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( sup ( ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , ℝ , < ) = ( 𝐹 ‘ 𝑥 ) ↔ ( sup ( ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , ℝ , < ) ≤ ( 𝐹 ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) ≤ sup ( ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , ℝ , < ) ) ) ) |
| 243 | 225 240 242 | mpbir2and | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → sup ( ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , ℝ , < ) = ( 𝐹 ‘ 𝑥 ) ) |
| 244 | 243 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ sup ( ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , ℝ , < ) ) = ( 𝑥 ∈ ℝ ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 245 | 244 168 | eqtr4d | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ sup ( ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , ℝ , < ) ) = 𝐹 ) |
| 246 | 245 | fveq2d | ⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ sup ( ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , ℝ , < ) ) ) = ( ∫2 ‘ 𝐹 ) ) |
| 247 | 193 246 | eqtr3d | ⊢ ( 𝜑 → sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) , ℝ* , < ) = ( ∫2 ‘ 𝐹 ) ) |