This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Integral of a constant function. (Contributed by Mario Carneiro, 12-Aug-2014) (Revised by Mario Carneiro, 23-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | itg2const | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ( 0 [,) +∞ ) ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ) = ( 𝐵 · ( vol ‘ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reex | ⊢ ℝ ∈ V | |
| 2 | 1 | a1i | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ( 0 [,) +∞ ) ) → ℝ ∈ V ) |
| 3 | simpl3 | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ 𝑥 ∈ ℝ ) → 𝐵 ∈ ( 0 [,) +∞ ) ) | |
| 4 | 1re | ⊢ 1 ∈ ℝ | |
| 5 | 0re | ⊢ 0 ∈ ℝ | |
| 6 | 4 5 | ifcli | ⊢ if ( 𝑥 ∈ 𝐴 , 1 , 0 ) ∈ ℝ |
| 7 | 6 | a1i | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ 𝐴 , 1 , 0 ) ∈ ℝ ) |
| 8 | fconstmpt | ⊢ ( ℝ × { 𝐵 } ) = ( 𝑥 ∈ ℝ ↦ 𝐵 ) | |
| 9 | 8 | a1i | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ( 0 [,) +∞ ) ) → ( ℝ × { 𝐵 } ) = ( 𝑥 ∈ ℝ ↦ 𝐵 ) ) |
| 10 | eqidd | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ( 0 [,) +∞ ) ) → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 1 , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 1 , 0 ) ) ) | |
| 11 | 2 3 7 9 10 | offval2 | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ( 0 [,) +∞ ) ) → ( ( ℝ × { 𝐵 } ) ∘f · ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 1 , 0 ) ) ) = ( 𝑥 ∈ ℝ ↦ ( 𝐵 · if ( 𝑥 ∈ 𝐴 , 1 , 0 ) ) ) ) |
| 12 | ovif2 | ⊢ ( 𝐵 · if ( 𝑥 ∈ 𝐴 , 1 , 0 ) ) = if ( 𝑥 ∈ 𝐴 , ( 𝐵 · 1 ) , ( 𝐵 · 0 ) ) | |
| 13 | simp3 | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ( 0 [,) +∞ ) ) → 𝐵 ∈ ( 0 [,) +∞ ) ) | |
| 14 | elrege0 | ⊢ ( 𝐵 ∈ ( 0 [,) +∞ ) ↔ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) | |
| 15 | 13 14 | sylib | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ( 0 [,) +∞ ) ) → ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) |
| 16 | 15 | simpld | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ( 0 [,) +∞ ) ) → 𝐵 ∈ ℝ ) |
| 17 | 16 | recnd | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ( 0 [,) +∞ ) ) → 𝐵 ∈ ℂ ) |
| 18 | 17 | mulridd | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ( 0 [,) +∞ ) ) → ( 𝐵 · 1 ) = 𝐵 ) |
| 19 | 17 | mul01d | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ( 0 [,) +∞ ) ) → ( 𝐵 · 0 ) = 0 ) |
| 20 | 18 19 | ifeq12d | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ( 0 [,) +∞ ) ) → if ( 𝑥 ∈ 𝐴 , ( 𝐵 · 1 ) , ( 𝐵 · 0 ) ) = if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) |
| 21 | 12 20 | eqtrid | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ( 0 [,) +∞ ) ) → ( 𝐵 · if ( 𝑥 ∈ 𝐴 , 1 , 0 ) ) = if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) |
| 22 | 21 | mpteq2dv | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ( 0 [,) +∞ ) ) → ( 𝑥 ∈ ℝ ↦ ( 𝐵 · if ( 𝑥 ∈ 𝐴 , 1 , 0 ) ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ) |
| 23 | 11 22 | eqtrd | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ( 0 [,) +∞ ) ) → ( ( ℝ × { 𝐵 } ) ∘f · ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 1 , 0 ) ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ) |
| 24 | eqid | ⊢ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 1 , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 1 , 0 ) ) | |
| 25 | 24 | i1f1 | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 1 , 0 ) ) ∈ dom ∫1 ) |
| 26 | 25 | 3adant3 | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ( 0 [,) +∞ ) ) → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 1 , 0 ) ) ∈ dom ∫1 ) |
| 27 | 26 16 | i1fmulc | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ( 0 [,) +∞ ) ) → ( ( ℝ × { 𝐵 } ) ∘f · ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 1 , 0 ) ) ) ∈ dom ∫1 ) |
| 28 | 23 27 | eqeltrrd | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ( 0 [,) +∞ ) ) → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ∈ dom ∫1 ) |
| 29 | 15 | simprd | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ( 0 [,) +∞ ) ) → 0 ≤ 𝐵 ) |
| 30 | 0le0 | ⊢ 0 ≤ 0 | |
| 31 | breq2 | ⊢ ( 𝐵 = if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) → ( 0 ≤ 𝐵 ↔ 0 ≤ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ) | |
| 32 | breq2 | ⊢ ( 0 = if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) → ( 0 ≤ 0 ↔ 0 ≤ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ) | |
| 33 | 31 32 | ifboth | ⊢ ( ( 0 ≤ 𝐵 ∧ 0 ≤ 0 ) → 0 ≤ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) |
| 34 | 29 30 33 | sylancl | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ( 0 [,) +∞ ) ) → 0 ≤ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) |
| 35 | 34 | ralrimivw | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ( 0 [,) +∞ ) ) → ∀ 𝑥 ∈ ℝ 0 ≤ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) |
| 36 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 37 | 36 | a1i | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ( 0 [,) +∞ ) ) → ℝ ⊆ ℂ ) |
| 38 | 16 | adantr | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ 𝑥 ∈ ℝ ) → 𝐵 ∈ ℝ ) |
| 39 | ifcl | ⊢ ( ( 𝐵 ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ∈ ℝ ) | |
| 40 | 38 5 39 | sylancl | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ∈ ℝ ) |
| 41 | 40 | ralrimiva | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ( 0 [,) +∞ ) ) → ∀ 𝑥 ∈ ℝ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ∈ ℝ ) |
| 42 | eqid | ⊢ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) | |
| 43 | 42 | fnmpt | ⊢ ( ∀ 𝑥 ∈ ℝ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ∈ ℝ → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) Fn ℝ ) |
| 44 | 41 43 | syl | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ( 0 [,) +∞ ) ) → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) Fn ℝ ) |
| 45 | 37 44 | 0pledm | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ( 0 [,) +∞ ) ) → ( 0𝑝 ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ↔ ( ℝ × { 0 } ) ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ) ) |
| 46 | 5 | a1i | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ 𝑥 ∈ ℝ ) → 0 ∈ ℝ ) |
| 47 | fconstmpt | ⊢ ( ℝ × { 0 } ) = ( 𝑥 ∈ ℝ ↦ 0 ) | |
| 48 | 47 | a1i | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ( 0 [,) +∞ ) ) → ( ℝ × { 0 } ) = ( 𝑥 ∈ ℝ ↦ 0 ) ) |
| 49 | eqidd | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ( 0 [,) +∞ ) ) → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ) | |
| 50 | 2 46 40 48 49 | ofrfval2 | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ( 0 [,) +∞ ) ) → ( ( ℝ × { 0 } ) ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ↔ ∀ 𝑥 ∈ ℝ 0 ≤ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ) |
| 51 | 45 50 | bitrd | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ( 0 [,) +∞ ) ) → ( 0𝑝 ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ↔ ∀ 𝑥 ∈ ℝ 0 ≤ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ) |
| 52 | 35 51 | mpbird | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ( 0 [,) +∞ ) ) → 0𝑝 ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ) |
| 53 | itg2itg1 | ⊢ ( ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ) = ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ) ) | |
| 54 | 28 52 53 | syl2anc | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ( 0 [,) +∞ ) ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ) = ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ) ) |
| 55 | 26 16 | itg1mulc | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ( 0 [,) +∞ ) ) → ( ∫1 ‘ ( ( ℝ × { 𝐵 } ) ∘f · ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 1 , 0 ) ) ) ) = ( 𝐵 · ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 1 , 0 ) ) ) ) ) |
| 56 | 23 | fveq2d | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ( 0 [,) +∞ ) ) → ( ∫1 ‘ ( ( ℝ × { 𝐵 } ) ∘f · ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 1 , 0 ) ) ) ) = ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ) ) |
| 57 | 24 | itg11 | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) → ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 1 , 0 ) ) ) = ( vol ‘ 𝐴 ) ) |
| 58 | 57 | 3adant3 | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ( 0 [,) +∞ ) ) → ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 1 , 0 ) ) ) = ( vol ‘ 𝐴 ) ) |
| 59 | 58 | oveq2d | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ( 0 [,) +∞ ) ) → ( 𝐵 · ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 1 , 0 ) ) ) ) = ( 𝐵 · ( vol ‘ 𝐴 ) ) ) |
| 60 | 55 56 59 | 3eqtr3d | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ( 0 [,) +∞ ) ) → ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ) = ( 𝐵 · ( vol ‘ 𝐴 ) ) ) |
| 61 | 54 60 | eqtrd | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ( 0 [,) +∞ ) ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ) = ( 𝐵 · ( vol ‘ 𝐴 ) ) ) |