This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem inex2

Description: Separation Scheme (Aussonderung) using class notation. (Contributed by NM, 27-Apr-1994)

Ref Expression
Hypothesis inex2.1 𝐴 ∈ V
Assertion inex2 ( 𝐵𝐴 ) ∈ V

Proof

Step Hyp Ref Expression
1 inex2.1 𝐴 ∈ V
2 incom ( 𝐵𝐴 ) = ( 𝐴𝐵 )
3 1 inex1 ( 𝐴𝐵 ) ∈ V
4 2 3 eqeltri ( 𝐵𝐴 ) ∈ V