This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any preimage of a simple function is measurable. (Contributed by Mario Carneiro, 26-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | i1fima | ⊢ ( 𝐹 ∈ dom ∫1 → ( ◡ 𝐹 “ 𝐴 ) ∈ dom vol ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | i1ff | ⊢ ( 𝐹 ∈ dom ∫1 → 𝐹 : ℝ ⟶ ℝ ) | |
| 2 | ffun | ⊢ ( 𝐹 : ℝ ⟶ ℝ → Fun 𝐹 ) | |
| 3 | inpreima | ⊢ ( Fun 𝐹 → ( ◡ 𝐹 “ ( 𝐴 ∩ ran 𝐹 ) ) = ( ( ◡ 𝐹 “ 𝐴 ) ∩ ( ◡ 𝐹 “ ran 𝐹 ) ) ) | |
| 4 | iunid | ⊢ ∪ 𝑦 ∈ ( 𝐴 ∩ ran 𝐹 ) { 𝑦 } = ( 𝐴 ∩ ran 𝐹 ) | |
| 5 | 4 | imaeq2i | ⊢ ( ◡ 𝐹 “ ∪ 𝑦 ∈ ( 𝐴 ∩ ran 𝐹 ) { 𝑦 } ) = ( ◡ 𝐹 “ ( 𝐴 ∩ ran 𝐹 ) ) |
| 6 | imaiun | ⊢ ( ◡ 𝐹 “ ∪ 𝑦 ∈ ( 𝐴 ∩ ran 𝐹 ) { 𝑦 } ) = ∪ 𝑦 ∈ ( 𝐴 ∩ ran 𝐹 ) ( ◡ 𝐹 “ { 𝑦 } ) | |
| 7 | 5 6 | eqtr3i | ⊢ ( ◡ 𝐹 “ ( 𝐴 ∩ ran 𝐹 ) ) = ∪ 𝑦 ∈ ( 𝐴 ∩ ran 𝐹 ) ( ◡ 𝐹 “ { 𝑦 } ) |
| 8 | cnvimass | ⊢ ( ◡ 𝐹 “ 𝐴 ) ⊆ dom 𝐹 | |
| 9 | cnvimarndm | ⊢ ( ◡ 𝐹 “ ran 𝐹 ) = dom 𝐹 | |
| 10 | 8 9 | sseqtrri | ⊢ ( ◡ 𝐹 “ 𝐴 ) ⊆ ( ◡ 𝐹 “ ran 𝐹 ) |
| 11 | dfss2 | ⊢ ( ( ◡ 𝐹 “ 𝐴 ) ⊆ ( ◡ 𝐹 “ ran 𝐹 ) ↔ ( ( ◡ 𝐹 “ 𝐴 ) ∩ ( ◡ 𝐹 “ ran 𝐹 ) ) = ( ◡ 𝐹 “ 𝐴 ) ) | |
| 12 | 10 11 | mpbi | ⊢ ( ( ◡ 𝐹 “ 𝐴 ) ∩ ( ◡ 𝐹 “ ran 𝐹 ) ) = ( ◡ 𝐹 “ 𝐴 ) |
| 13 | 3 7 12 | 3eqtr3g | ⊢ ( Fun 𝐹 → ∪ 𝑦 ∈ ( 𝐴 ∩ ran 𝐹 ) ( ◡ 𝐹 “ { 𝑦 } ) = ( ◡ 𝐹 “ 𝐴 ) ) |
| 14 | 1 2 13 | 3syl | ⊢ ( 𝐹 ∈ dom ∫1 → ∪ 𝑦 ∈ ( 𝐴 ∩ ran 𝐹 ) ( ◡ 𝐹 “ { 𝑦 } ) = ( ◡ 𝐹 “ 𝐴 ) ) |
| 15 | i1frn | ⊢ ( 𝐹 ∈ dom ∫1 → ran 𝐹 ∈ Fin ) | |
| 16 | inss2 | ⊢ ( 𝐴 ∩ ran 𝐹 ) ⊆ ran 𝐹 | |
| 17 | ssfi | ⊢ ( ( ran 𝐹 ∈ Fin ∧ ( 𝐴 ∩ ran 𝐹 ) ⊆ ran 𝐹 ) → ( 𝐴 ∩ ran 𝐹 ) ∈ Fin ) | |
| 18 | 15 16 17 | sylancl | ⊢ ( 𝐹 ∈ dom ∫1 → ( 𝐴 ∩ ran 𝐹 ) ∈ Fin ) |
| 19 | i1fmbf | ⊢ ( 𝐹 ∈ dom ∫1 → 𝐹 ∈ MblFn ) | |
| 20 | 19 | adantr | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑦 ∈ ( 𝐴 ∩ ran 𝐹 ) ) → 𝐹 ∈ MblFn ) |
| 21 | 1 | adantr | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑦 ∈ ( 𝐴 ∩ ran 𝐹 ) ) → 𝐹 : ℝ ⟶ ℝ ) |
| 22 | 1 | frnd | ⊢ ( 𝐹 ∈ dom ∫1 → ran 𝐹 ⊆ ℝ ) |
| 23 | 16 22 | sstrid | ⊢ ( 𝐹 ∈ dom ∫1 → ( 𝐴 ∩ ran 𝐹 ) ⊆ ℝ ) |
| 24 | 23 | sselda | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑦 ∈ ( 𝐴 ∩ ran 𝐹 ) ) → 𝑦 ∈ ℝ ) |
| 25 | mbfimasn | ⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : ℝ ⟶ ℝ ∧ 𝑦 ∈ ℝ ) → ( ◡ 𝐹 “ { 𝑦 } ) ∈ dom vol ) | |
| 26 | 20 21 24 25 | syl3anc | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑦 ∈ ( 𝐴 ∩ ran 𝐹 ) ) → ( ◡ 𝐹 “ { 𝑦 } ) ∈ dom vol ) |
| 27 | 26 | ralrimiva | ⊢ ( 𝐹 ∈ dom ∫1 → ∀ 𝑦 ∈ ( 𝐴 ∩ ran 𝐹 ) ( ◡ 𝐹 “ { 𝑦 } ) ∈ dom vol ) |
| 28 | finiunmbl | ⊢ ( ( ( 𝐴 ∩ ran 𝐹 ) ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴 ∩ ran 𝐹 ) ( ◡ 𝐹 “ { 𝑦 } ) ∈ dom vol ) → ∪ 𝑦 ∈ ( 𝐴 ∩ ran 𝐹 ) ( ◡ 𝐹 “ { 𝑦 } ) ∈ dom vol ) | |
| 29 | 18 27 28 | syl2anc | ⊢ ( 𝐹 ∈ dom ∫1 → ∪ 𝑦 ∈ ( 𝐴 ∩ ran 𝐹 ) ( ◡ 𝐹 “ { 𝑦 } ) ∈ dom vol ) |
| 30 | 14 29 | eqeltrrd | ⊢ ( 𝐹 ∈ dom ∫1 → ( ◡ 𝐹 “ 𝐴 ) ∈ dom vol ) |