This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any simple function takes the value zero on a set of unbounded measure, so in particular this set is not empty. (Contributed by Mario Carneiro, 18-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | i1f0rn | ⊢ ( 𝐹 ∈ dom ∫1 → 0 ∈ ran 𝐹 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pnfnre | ⊢ +∞ ∉ ℝ | |
| 2 | 1 | neli | ⊢ ¬ +∞ ∈ ℝ |
| 3 | rembl | ⊢ ℝ ∈ dom vol | |
| 4 | mblvol | ⊢ ( ℝ ∈ dom vol → ( vol ‘ ℝ ) = ( vol* ‘ ℝ ) ) | |
| 5 | 3 4 | ax-mp | ⊢ ( vol ‘ ℝ ) = ( vol* ‘ ℝ ) |
| 6 | ovolre | ⊢ ( vol* ‘ ℝ ) = +∞ | |
| 7 | 5 6 | eqtri | ⊢ ( vol ‘ ℝ ) = +∞ |
| 8 | cnvimarndm | ⊢ ( ◡ 𝐹 “ ran 𝐹 ) = dom 𝐹 | |
| 9 | i1ff | ⊢ ( 𝐹 ∈ dom ∫1 → 𝐹 : ℝ ⟶ ℝ ) | |
| 10 | 9 | fdmd | ⊢ ( 𝐹 ∈ dom ∫1 → dom 𝐹 = ℝ ) |
| 11 | 10 | adantr | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ ran 𝐹 ) → dom 𝐹 = ℝ ) |
| 12 | 8 11 | eqtrid | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ ran 𝐹 ) → ( ◡ 𝐹 “ ran 𝐹 ) = ℝ ) |
| 13 | 12 | fveq2d | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ ran 𝐹 ) → ( vol ‘ ( ◡ 𝐹 “ ran 𝐹 ) ) = ( vol ‘ ℝ ) ) |
| 14 | i1fima2 | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ ran 𝐹 ) → ( vol ‘ ( ◡ 𝐹 “ ran 𝐹 ) ) ∈ ℝ ) | |
| 15 | 13 14 | eqeltrrd | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ ran 𝐹 ) → ( vol ‘ ℝ ) ∈ ℝ ) |
| 16 | 7 15 | eqeltrrid | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ ran 𝐹 ) → +∞ ∈ ℝ ) |
| 17 | 16 | ex | ⊢ ( 𝐹 ∈ dom ∫1 → ( ¬ 0 ∈ ran 𝐹 → +∞ ∈ ℝ ) ) |
| 18 | 2 17 | mt3i | ⊢ ( 𝐹 ∈ dom ∫1 → 0 ∈ ran 𝐹 ) |