This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Limit of a finite sum of converging sequences. Note that F ( k ) is a collection of functions with implicit parameter k , each of which converges to B ( k ) as n ~> +oo . (Contributed by Mario Carneiro, 22-Jul-2014) (Proof shortened by Mario Carneiro, 22-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | climfsum.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| climfsum.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| climfsum.3 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | ||
| climfsum.5 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐹 ⇝ 𝐵 ) | ||
| climfsum.6 | ⊢ ( 𝜑 → 𝐻 ∈ 𝑊 ) | ||
| climfsum.7 | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∧ 𝑛 ∈ 𝑍 ) ) → ( 𝐹 ‘ 𝑛 ) ∈ ℂ ) | ||
| climfsum.8 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐻 ‘ 𝑛 ) = Σ 𝑘 ∈ 𝐴 ( 𝐹 ‘ 𝑛 ) ) | ||
| Assertion | climfsum | ⊢ ( 𝜑 → 𝐻 ⇝ Σ 𝑘 ∈ 𝐴 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climfsum.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | climfsum.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 3 | climfsum.3 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 4 | climfsum.5 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐹 ⇝ 𝐵 ) | |
| 5 | climfsum.6 | ⊢ ( 𝜑 → 𝐻 ∈ 𝑊 ) | |
| 6 | climfsum.7 | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∧ 𝑛 ∈ 𝑍 ) ) → ( 𝐹 ‘ 𝑛 ) ∈ ℂ ) | |
| 7 | climfsum.8 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐻 ‘ 𝑛 ) = Σ 𝑘 ∈ 𝐴 ( 𝐹 ‘ 𝑛 ) ) | |
| 8 | 7 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑛 ∈ 𝑍 ↦ ( 𝐻 ‘ 𝑛 ) ) = ( 𝑛 ∈ 𝑍 ↦ Σ 𝑘 ∈ 𝐴 ( 𝐹 ‘ 𝑛 ) ) ) |
| 9 | uzssz | ⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℤ | |
| 10 | 1 9 | eqsstri | ⊢ 𝑍 ⊆ ℤ |
| 11 | zssre | ⊢ ℤ ⊆ ℝ | |
| 12 | 10 11 | sstri | ⊢ 𝑍 ⊆ ℝ |
| 13 | 12 | a1i | ⊢ ( 𝜑 → 𝑍 ⊆ ℝ ) |
| 14 | fvexd | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ 𝑍 ∧ 𝑘 ∈ 𝐴 ) ) → ( 𝐹 ‘ 𝑛 ) ∈ V ) | |
| 15 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑀 ∈ ℤ ) |
| 16 | climrel | ⊢ Rel ⇝ | |
| 17 | 16 | brrelex1i | ⊢ ( 𝐹 ⇝ 𝐵 → 𝐹 ∈ V ) |
| 18 | 4 17 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐹 ∈ V ) |
| 19 | eqid | ⊢ ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) = ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) | |
| 20 | 1 19 | climmpt | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ V ) → ( 𝐹 ⇝ 𝐵 ↔ ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) ⇝ 𝐵 ) ) |
| 21 | 15 18 20 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐹 ⇝ 𝐵 ↔ ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) ⇝ 𝐵 ) ) |
| 22 | 4 21 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) ⇝ 𝐵 ) |
| 23 | 6 | anassrs | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑛 ) ∈ ℂ ) |
| 24 | 23 | fmpttd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) : 𝑍 ⟶ ℂ ) |
| 25 | 1 15 24 | rlimclim | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) ⇝𝑟 𝐵 ↔ ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) ⇝ 𝐵 ) ) |
| 26 | 22 25 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑛 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑛 ) ) ⇝𝑟 𝐵 ) |
| 27 | 13 3 14 26 | fsumrlim | ⊢ ( 𝜑 → ( 𝑛 ∈ 𝑍 ↦ Σ 𝑘 ∈ 𝐴 ( 𝐹 ‘ 𝑛 ) ) ⇝𝑟 Σ 𝑘 ∈ 𝐴 𝐵 ) |
| 28 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → 𝐴 ∈ Fin ) |
| 29 | 6 | anass1rs | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑘 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑛 ) ∈ ℂ ) |
| 30 | 28 29 | fsumcl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → Σ 𝑘 ∈ 𝐴 ( 𝐹 ‘ 𝑛 ) ∈ ℂ ) |
| 31 | 30 | fmpttd | ⊢ ( 𝜑 → ( 𝑛 ∈ 𝑍 ↦ Σ 𝑘 ∈ 𝐴 ( 𝐹 ‘ 𝑛 ) ) : 𝑍 ⟶ ℂ ) |
| 32 | 1 2 31 | rlimclim | ⊢ ( 𝜑 → ( ( 𝑛 ∈ 𝑍 ↦ Σ 𝑘 ∈ 𝐴 ( 𝐹 ‘ 𝑛 ) ) ⇝𝑟 Σ 𝑘 ∈ 𝐴 𝐵 ↔ ( 𝑛 ∈ 𝑍 ↦ Σ 𝑘 ∈ 𝐴 ( 𝐹 ‘ 𝑛 ) ) ⇝ Σ 𝑘 ∈ 𝐴 𝐵 ) ) |
| 33 | 27 32 | mpbid | ⊢ ( 𝜑 → ( 𝑛 ∈ 𝑍 ↦ Σ 𝑘 ∈ 𝐴 ( 𝐹 ‘ 𝑛 ) ) ⇝ Σ 𝑘 ∈ 𝐴 𝐵 ) |
| 34 | 8 33 | eqbrtrd | ⊢ ( 𝜑 → ( 𝑛 ∈ 𝑍 ↦ ( 𝐻 ‘ 𝑛 ) ) ⇝ Σ 𝑘 ∈ 𝐴 𝐵 ) |
| 35 | eqid | ⊢ ( 𝑛 ∈ 𝑍 ↦ ( 𝐻 ‘ 𝑛 ) ) = ( 𝑛 ∈ 𝑍 ↦ ( 𝐻 ‘ 𝑛 ) ) | |
| 36 | 1 35 | climmpt | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐻 ∈ 𝑊 ) → ( 𝐻 ⇝ Σ 𝑘 ∈ 𝐴 𝐵 ↔ ( 𝑛 ∈ 𝑍 ↦ ( 𝐻 ‘ 𝑛 ) ) ⇝ Σ 𝑘 ∈ 𝐴 𝐵 ) ) |
| 37 | 2 5 36 | syl2anc | ⊢ ( 𝜑 → ( 𝐻 ⇝ Σ 𝑘 ∈ 𝐴 𝐵 ↔ ( 𝑛 ∈ 𝑍 ↦ ( 𝐻 ‘ 𝑛 ) ) ⇝ Σ 𝑘 ∈ 𝐴 𝐵 ) ) |
| 38 | 34 37 | mpbird | ⊢ ( 𝜑 → 𝐻 ⇝ Σ 𝑘 ∈ 𝐴 𝐵 ) |