This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Establish equality between classes, using bound-variable hypotheses instead of distinct variable conditions as in dfcleq . See also cleqh . (Contributed by NM, 26-May-1993) (Revised by Mario Carneiro, 7-Oct-2016) (Proof shortened by Wolf Lammen, 17-Nov-2019) Avoid ax-13 . (Revised by Wolf Lammen, 10-May-2023) Avoid ax-10 . (Revised by GG, 20-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cleqf.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| cleqf.2 | ⊢ Ⅎ 𝑥 𝐵 | ||
| Assertion | cleqf | ⊢ ( 𝐴 = 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cleqf.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| 2 | cleqf.2 | ⊢ Ⅎ 𝑥 𝐵 | |
| 3 | dfcleq | ⊢ ( 𝐴 = 𝐵 ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵 ) ) | |
| 4 | nfv | ⊢ Ⅎ 𝑦 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) | |
| 5 | 1 | nfcri | ⊢ Ⅎ 𝑥 𝑦 ∈ 𝐴 |
| 6 | 2 | nfcri | ⊢ Ⅎ 𝑥 𝑦 ∈ 𝐵 |
| 7 | 5 6 | nfbi | ⊢ Ⅎ 𝑥 ( 𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵 ) |
| 8 | eleq1w | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) | |
| 9 | eleq1w | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐵 ↔ 𝑦 ∈ 𝐵 ) ) | |
| 10 | 8 9 | bibi12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ↔ ( 𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵 ) ) ) |
| 11 | 4 7 10 | cbvalv1 | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵 ) ) |
| 12 | 3 11 | bitr4i | ⊢ ( 𝐴 = 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) |