This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the integral on simple functions. (Contributed by Mario Carneiro, 18-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | itg1val | ⊢ ( 𝐹 ∈ dom ∫1 → ( ∫1 ‘ 𝐹 ) = Σ 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ( 𝑥 · ( vol ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rneq | ⊢ ( 𝑓 = 𝐹 → ran 𝑓 = ran 𝐹 ) | |
| 2 | 1 | difeq1d | ⊢ ( 𝑓 = 𝐹 → ( ran 𝑓 ∖ { 0 } ) = ( ran 𝐹 ∖ { 0 } ) ) |
| 3 | cnveq | ⊢ ( 𝑓 = 𝐹 → ◡ 𝑓 = ◡ 𝐹 ) | |
| 4 | 3 | imaeq1d | ⊢ ( 𝑓 = 𝐹 → ( ◡ 𝑓 “ { 𝑥 } ) = ( ◡ 𝐹 “ { 𝑥 } ) ) |
| 5 | 4 | fveq2d | ⊢ ( 𝑓 = 𝐹 → ( vol ‘ ( ◡ 𝑓 “ { 𝑥 } ) ) = ( vol ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) |
| 6 | 5 | oveq2d | ⊢ ( 𝑓 = 𝐹 → ( 𝑥 · ( vol ‘ ( ◡ 𝑓 “ { 𝑥 } ) ) ) = ( 𝑥 · ( vol ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) ) |
| 7 | 6 | adantr | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑥 ∈ ( ran 𝑓 ∖ { 0 } ) ) → ( 𝑥 · ( vol ‘ ( ◡ 𝑓 “ { 𝑥 } ) ) ) = ( 𝑥 · ( vol ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) ) |
| 8 | 2 7 | sumeq12dv | ⊢ ( 𝑓 = 𝐹 → Σ 𝑥 ∈ ( ran 𝑓 ∖ { 0 } ) ( 𝑥 · ( vol ‘ ( ◡ 𝑓 “ { 𝑥 } ) ) ) = Σ 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ( 𝑥 · ( vol ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) ) |
| 9 | df-itg1 | ⊢ ∫1 = ( 𝑓 ∈ { 𝑔 ∈ MblFn ∣ ( 𝑔 : ℝ ⟶ ℝ ∧ ran 𝑔 ∈ Fin ∧ ( vol ‘ ( ◡ 𝑔 “ ( ℝ ∖ { 0 } ) ) ) ∈ ℝ ) } ↦ Σ 𝑥 ∈ ( ran 𝑓 ∖ { 0 } ) ( 𝑥 · ( vol ‘ ( ◡ 𝑓 “ { 𝑥 } ) ) ) ) | |
| 10 | sumex | ⊢ Σ 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ( 𝑥 · ( vol ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) ∈ V | |
| 11 | 8 9 10 | fvmpt | ⊢ ( 𝐹 ∈ { 𝑔 ∈ MblFn ∣ ( 𝑔 : ℝ ⟶ ℝ ∧ ran 𝑔 ∈ Fin ∧ ( vol ‘ ( ◡ 𝑔 “ ( ℝ ∖ { 0 } ) ) ) ∈ ℝ ) } → ( ∫1 ‘ 𝐹 ) = Σ 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ( 𝑥 · ( vol ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) ) |
| 12 | sumex | ⊢ Σ 𝑥 ∈ ( ran 𝑓 ∖ { 0 } ) ( 𝑥 · ( vol ‘ ( ◡ 𝑓 “ { 𝑥 } ) ) ) ∈ V | |
| 13 | 12 9 | dmmpti | ⊢ dom ∫1 = { 𝑔 ∈ MblFn ∣ ( 𝑔 : ℝ ⟶ ℝ ∧ ran 𝑔 ∈ Fin ∧ ( vol ‘ ( ◡ 𝑔 “ ( ℝ ∖ { 0 } ) ) ) ∈ ℝ ) } |
| 14 | 11 13 | eleq2s | ⊢ ( 𝐹 ∈ dom ∫1 → ( ∫1 ‘ 𝐹 ) = Σ 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ( 𝑥 · ( vol ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) ) |