This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for mbfi1fseq . (Contributed by Mario Carneiro, 16-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mbfi1fseq.1 | ⊢ ( 𝜑 → 𝐹 ∈ MblFn ) | |
| mbfi1fseq.2 | ⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ) | ||
| mbfi1fseq.3 | ⊢ 𝐽 = ( 𝑚 ∈ ℕ , 𝑦 ∈ ℝ ↦ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) / ( 2 ↑ 𝑚 ) ) ) | ||
| Assertion | mbfi1fseqlem1 | ⊢ ( 𝜑 → 𝐽 : ( ℕ × ℝ ) ⟶ ( 0 [,) +∞ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mbfi1fseq.1 | ⊢ ( 𝜑 → 𝐹 ∈ MblFn ) | |
| 2 | mbfi1fseq.2 | ⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ) | |
| 3 | mbfi1fseq.3 | ⊢ 𝐽 = ( 𝑚 ∈ ℕ , 𝑦 ∈ ℝ ↦ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) / ( 2 ↑ 𝑚 ) ) ) | |
| 4 | simpr | ⊢ ( ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℝ ) | |
| 5 | ffvelcdm | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ℝ ) → ( 𝐹 ‘ 𝑦 ) ∈ ( 0 [,) +∞ ) ) | |
| 6 | 2 4 5 | syl2an | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ( 0 [,) +∞ ) ) |
| 7 | elrege0 | ⊢ ( ( 𝐹 ‘ 𝑦 ) ∈ ( 0 [,) +∞ ) ↔ ( ( 𝐹 ‘ 𝑦 ) ∈ ℝ ∧ 0 ≤ ( 𝐹 ‘ 𝑦 ) ) ) | |
| 8 | 6 7 | sylib | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ) → ( ( 𝐹 ‘ 𝑦 ) ∈ ℝ ∧ 0 ≤ ( 𝐹 ‘ 𝑦 ) ) ) |
| 9 | 8 | simpld | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) |
| 10 | 2nn | ⊢ 2 ∈ ℕ | |
| 11 | nnnn0 | ⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℕ0 ) | |
| 12 | nnexpcl | ⊢ ( ( 2 ∈ ℕ ∧ 𝑚 ∈ ℕ0 ) → ( 2 ↑ 𝑚 ) ∈ ℕ ) | |
| 13 | 10 11 12 | sylancr | ⊢ ( 𝑚 ∈ ℕ → ( 2 ↑ 𝑚 ) ∈ ℕ ) |
| 14 | 13 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ) → ( 2 ↑ 𝑚 ) ∈ ℕ ) |
| 15 | 14 | nnred | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ) → ( 2 ↑ 𝑚 ) ∈ ℝ ) |
| 16 | 9 15 | remulcld | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ) → ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ∈ ℝ ) |
| 17 | reflcl | ⊢ ( ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ∈ ℝ → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) ∈ ℝ ) | |
| 18 | 16 17 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ) → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) ∈ ℝ ) |
| 19 | 18 14 | nndivred | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ) → ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) / ( 2 ↑ 𝑚 ) ) ∈ ℝ ) |
| 20 | 14 | nnnn0d | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ) → ( 2 ↑ 𝑚 ) ∈ ℕ0 ) |
| 21 | 20 | nn0ge0d | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ) → 0 ≤ ( 2 ↑ 𝑚 ) ) |
| 22 | mulge0 | ⊢ ( ( ( ( 𝐹 ‘ 𝑦 ) ∈ ℝ ∧ 0 ≤ ( 𝐹 ‘ 𝑦 ) ) ∧ ( ( 2 ↑ 𝑚 ) ∈ ℝ ∧ 0 ≤ ( 2 ↑ 𝑚 ) ) ) → 0 ≤ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) | |
| 23 | 8 15 21 22 | syl12anc | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ) → 0 ≤ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) |
| 24 | flge0nn0 | ⊢ ( ( ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ∈ ℝ ∧ 0 ≤ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) ∈ ℕ0 ) | |
| 25 | 16 23 24 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ) → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) ∈ ℕ0 ) |
| 26 | 25 | nn0ge0d | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ) → 0 ≤ ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) ) |
| 27 | 14 | nngt0d | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ) → 0 < ( 2 ↑ 𝑚 ) ) |
| 28 | divge0 | ⊢ ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) ∈ ℝ ∧ 0 ≤ ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) ) ∧ ( ( 2 ↑ 𝑚 ) ∈ ℝ ∧ 0 < ( 2 ↑ 𝑚 ) ) ) → 0 ≤ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) / ( 2 ↑ 𝑚 ) ) ) | |
| 29 | 18 26 15 27 28 | syl22anc | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ) → 0 ≤ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) / ( 2 ↑ 𝑚 ) ) ) |
| 30 | elrege0 | ⊢ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) / ( 2 ↑ 𝑚 ) ) ∈ ( 0 [,) +∞ ) ↔ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) / ( 2 ↑ 𝑚 ) ) ∈ ℝ ∧ 0 ≤ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) / ( 2 ↑ 𝑚 ) ) ) ) | |
| 31 | 19 29 30 | sylanbrc | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ) → ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) / ( 2 ↑ 𝑚 ) ) ∈ ( 0 [,) +∞ ) ) |
| 32 | 31 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑚 ∈ ℕ ∀ 𝑦 ∈ ℝ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) / ( 2 ↑ 𝑚 ) ) ∈ ( 0 [,) +∞ ) ) |
| 33 | 3 | fmpo | ⊢ ( ∀ 𝑚 ∈ ℕ ∀ 𝑦 ∈ ℝ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) / ( 2 ↑ 𝑚 ) ) ∈ ( 0 [,) +∞ ) ↔ 𝐽 : ( ℕ × ℝ ) ⟶ ( 0 [,) +∞ ) ) |
| 34 | 32 33 | sylib | ⊢ ( 𝜑 → 𝐽 : ( ℕ × ℝ ) ⟶ ( 0 [,) +∞ ) ) |