This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the integral on simple functions. (Contributed by Mario Carneiro, 26-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | itg1val2 | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) → ( ∫1 ‘ 𝐹 ) = Σ 𝑥 ∈ 𝐴 ( 𝑥 · ( vol ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itg1val | ⊢ ( 𝐹 ∈ dom ∫1 → ( ∫1 ‘ 𝐹 ) = Σ 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ( 𝑥 · ( vol ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) → ( ∫1 ‘ 𝐹 ) = Σ 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ( 𝑥 · ( vol ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) ) |
| 3 | simpr2 | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) → ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴 ) | |
| 4 | 3 | sselda | ⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) ∧ 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ) → 𝑥 ∈ 𝐴 ) |
| 5 | simpr3 | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) → 𝐴 ⊆ ( ℝ ∖ { 0 } ) ) | |
| 6 | 5 | sselda | ⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ( ℝ ∖ { 0 } ) ) |
| 7 | eldifi | ⊢ ( 𝑥 ∈ ( ℝ ∖ { 0 } ) → 𝑥 ∈ ℝ ) | |
| 8 | 6 7 | syl | ⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ℝ ) |
| 9 | i1fima2sn | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ( ℝ ∖ { 0 } ) ) → ( vol ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ∈ ℝ ) | |
| 10 | 9 | adantlr | ⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ { 0 } ) ) → ( vol ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ∈ ℝ ) |
| 11 | 6 10 | syldan | ⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) ∧ 𝑥 ∈ 𝐴 ) → ( vol ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ∈ ℝ ) |
| 12 | 8 11 | remulcld | ⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 · ( vol ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) ∈ ℝ ) |
| 13 | 12 | recnd | ⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 · ( vol ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) ∈ ℂ ) |
| 14 | 4 13 | syldan | ⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) ∧ 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( 𝑥 · ( vol ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) ∈ ℂ ) |
| 15 | i1ff | ⊢ ( 𝐹 ∈ dom ∫1 → 𝐹 : ℝ ⟶ ℝ ) | |
| 16 | 15 | ad2antrr | ⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ran 𝐹 ∖ { 0 } ) ) ) → 𝐹 : ℝ ⟶ ℝ ) |
| 17 | ffrn | ⊢ ( 𝐹 : ℝ ⟶ ℝ → 𝐹 : ℝ ⟶ ran 𝐹 ) | |
| 18 | 16 17 | syl | ⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ran 𝐹 ∖ { 0 } ) ) ) → 𝐹 : ℝ ⟶ ran 𝐹 ) |
| 19 | eldifn | ⊢ ( 𝑥 ∈ ( 𝐴 ∖ ( ran 𝐹 ∖ { 0 } ) ) → ¬ 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ) | |
| 20 | 19 | adantl | ⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ran 𝐹 ∖ { 0 } ) ) ) → ¬ 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ) |
| 21 | eldif | ⊢ ( 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ↔ ( 𝑥 ∈ ran 𝐹 ∧ ¬ 𝑥 ∈ { 0 } ) ) | |
| 22 | simplr3 | ⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ran 𝐹 ∖ { 0 } ) ) ) → 𝐴 ⊆ ( ℝ ∖ { 0 } ) ) | |
| 23 | 22 | ssdifssd | ⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ran 𝐹 ∖ { 0 } ) ) ) → ( 𝐴 ∖ ( ran 𝐹 ∖ { 0 } ) ) ⊆ ( ℝ ∖ { 0 } ) ) |
| 24 | simpr | ⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ran 𝐹 ∖ { 0 } ) ) ) → 𝑥 ∈ ( 𝐴 ∖ ( ran 𝐹 ∖ { 0 } ) ) ) | |
| 25 | 23 24 | sseldd | ⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ran 𝐹 ∖ { 0 } ) ) ) → 𝑥 ∈ ( ℝ ∖ { 0 } ) ) |
| 26 | eldifn | ⊢ ( 𝑥 ∈ ( ℝ ∖ { 0 } ) → ¬ 𝑥 ∈ { 0 } ) | |
| 27 | 25 26 | syl | ⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ran 𝐹 ∖ { 0 } ) ) ) → ¬ 𝑥 ∈ { 0 } ) |
| 28 | 27 | biantrud | ⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ran 𝐹 ∖ { 0 } ) ) ) → ( 𝑥 ∈ ran 𝐹 ↔ ( 𝑥 ∈ ran 𝐹 ∧ ¬ 𝑥 ∈ { 0 } ) ) ) |
| 29 | 21 28 | bitr4id | ⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ran 𝐹 ∖ { 0 } ) ) ) → ( 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ↔ 𝑥 ∈ ran 𝐹 ) ) |
| 30 | 20 29 | mtbid | ⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ran 𝐹 ∖ { 0 } ) ) ) → ¬ 𝑥 ∈ ran 𝐹 ) |
| 31 | disjsn | ⊢ ( ( ran 𝐹 ∩ { 𝑥 } ) = ∅ ↔ ¬ 𝑥 ∈ ran 𝐹 ) | |
| 32 | 30 31 | sylibr | ⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ran 𝐹 ∖ { 0 } ) ) ) → ( ran 𝐹 ∩ { 𝑥 } ) = ∅ ) |
| 33 | fimacnvdisj | ⊢ ( ( 𝐹 : ℝ ⟶ ran 𝐹 ∧ ( ran 𝐹 ∩ { 𝑥 } ) = ∅ ) → ( ◡ 𝐹 “ { 𝑥 } ) = ∅ ) | |
| 34 | 18 32 33 | syl2anc | ⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ran 𝐹 ∖ { 0 } ) ) ) → ( ◡ 𝐹 “ { 𝑥 } ) = ∅ ) |
| 35 | 34 | fveq2d | ⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ran 𝐹 ∖ { 0 } ) ) ) → ( vol ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) = ( vol ‘ ∅ ) ) |
| 36 | 0mbl | ⊢ ∅ ∈ dom vol | |
| 37 | mblvol | ⊢ ( ∅ ∈ dom vol → ( vol ‘ ∅ ) = ( vol* ‘ ∅ ) ) | |
| 38 | 36 37 | ax-mp | ⊢ ( vol ‘ ∅ ) = ( vol* ‘ ∅ ) |
| 39 | ovol0 | ⊢ ( vol* ‘ ∅ ) = 0 | |
| 40 | 38 39 | eqtri | ⊢ ( vol ‘ ∅ ) = 0 |
| 41 | 35 40 | eqtrdi | ⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ran 𝐹 ∖ { 0 } ) ) ) → ( vol ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) = 0 ) |
| 42 | 41 | oveq2d | ⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ran 𝐹 ∖ { 0 } ) ) ) → ( 𝑥 · ( vol ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) = ( 𝑥 · 0 ) ) |
| 43 | eldifi | ⊢ ( 𝑥 ∈ ( 𝐴 ∖ ( ran 𝐹 ∖ { 0 } ) ) → 𝑥 ∈ 𝐴 ) | |
| 44 | 43 8 | sylan2 | ⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ran 𝐹 ∖ { 0 } ) ) ) → 𝑥 ∈ ℝ ) |
| 45 | 44 | recnd | ⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ran 𝐹 ∖ { 0 } ) ) ) → 𝑥 ∈ ℂ ) |
| 46 | 45 | mul01d | ⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ran 𝐹 ∖ { 0 } ) ) ) → ( 𝑥 · 0 ) = 0 ) |
| 47 | 42 46 | eqtrd | ⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ran 𝐹 ∖ { 0 } ) ) ) → ( 𝑥 · ( vol ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) = 0 ) |
| 48 | simpr1 | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) → 𝐴 ∈ Fin ) | |
| 49 | 3 14 47 48 | fsumss | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) → Σ 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ( 𝑥 · ( vol ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) = Σ 𝑥 ∈ 𝐴 ( 𝑥 · ( vol ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) ) |
| 50 | 2 49 | eqtrd | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) → ( ∫1 ‘ 𝐹 ) = Σ 𝑥 ∈ 𝐴 ( 𝑥 · ( vol ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) ) |