This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A "local" form of gchac . If A and ~P A are GCH-sets, then the Hartogs number of A is ~P A (so ~P A and a fortiori A are well-orderable). The proof is due to Specker. Theorem 2.1 of KanamoriPincus p. 419. (Contributed by Mario Carneiro, 31-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gchhar | ⊢ ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH ) → ( har ‘ 𝐴 ) ≈ 𝒫 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | harcl | ⊢ ( har ‘ 𝐴 ) ∈ On | |
| 2 | simp3 | ⊢ ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH ) → 𝒫 𝐴 ∈ GCH ) | |
| 3 | djudoml | ⊢ ( ( ( har ‘ 𝐴 ) ∈ On ∧ 𝒫 𝐴 ∈ GCH ) → ( har ‘ 𝐴 ) ≼ ( ( har ‘ 𝐴 ) ⊔ 𝒫 𝐴 ) ) | |
| 4 | 1 2 3 | sylancr | ⊢ ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH ) → ( har ‘ 𝐴 ) ≼ ( ( har ‘ 𝐴 ) ⊔ 𝒫 𝐴 ) ) |
| 5 | domnsym | ⊢ ( ω ≼ 𝐴 → ¬ 𝐴 ≺ ω ) | |
| 6 | 5 | 3ad2ant1 | ⊢ ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH ) → ¬ 𝐴 ≺ ω ) |
| 7 | isfinite | ⊢ ( 𝐴 ∈ Fin ↔ 𝐴 ≺ ω ) | |
| 8 | 6 7 | sylnibr | ⊢ ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH ) → ¬ 𝐴 ∈ Fin ) |
| 9 | pwfi | ⊢ ( 𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin ) | |
| 10 | 8 9 | sylnib | ⊢ ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH ) → ¬ 𝒫 𝐴 ∈ Fin ) |
| 11 | djudoml | ⊢ ( ( 𝒫 𝐴 ∈ GCH ∧ ( har ‘ 𝐴 ) ∈ On ) → 𝒫 𝐴 ≼ ( 𝒫 𝐴 ⊔ ( har ‘ 𝐴 ) ) ) | |
| 12 | 2 1 11 | sylancl | ⊢ ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH ) → 𝒫 𝐴 ≼ ( 𝒫 𝐴 ⊔ ( har ‘ 𝐴 ) ) ) |
| 13 | fvexd | ⊢ ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH ) → ( har ‘ 𝐴 ) ∈ V ) | |
| 14 | djuex | ⊢ ( ( 𝒫 𝐴 ∈ GCH ∧ ( har ‘ 𝐴 ) ∈ V ) → ( 𝒫 𝐴 ⊔ ( har ‘ 𝐴 ) ) ∈ V ) | |
| 15 | 2 13 14 | syl2anc | ⊢ ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH ) → ( 𝒫 𝐴 ⊔ ( har ‘ 𝐴 ) ) ∈ V ) |
| 16 | canth2g | ⊢ ( ( 𝒫 𝐴 ⊔ ( har ‘ 𝐴 ) ) ∈ V → ( 𝒫 𝐴 ⊔ ( har ‘ 𝐴 ) ) ≺ 𝒫 ( 𝒫 𝐴 ⊔ ( har ‘ 𝐴 ) ) ) | |
| 17 | 15 16 | syl | ⊢ ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH ) → ( 𝒫 𝐴 ⊔ ( har ‘ 𝐴 ) ) ≺ 𝒫 ( 𝒫 𝐴 ⊔ ( har ‘ 𝐴 ) ) ) |
| 18 | pwdjuen | ⊢ ( ( 𝒫 𝐴 ∈ GCH ∧ ( har ‘ 𝐴 ) ∈ On ) → 𝒫 ( 𝒫 𝐴 ⊔ ( har ‘ 𝐴 ) ) ≈ ( 𝒫 𝒫 𝐴 × 𝒫 ( har ‘ 𝐴 ) ) ) | |
| 19 | 2 1 18 | sylancl | ⊢ ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH ) → 𝒫 ( 𝒫 𝐴 ⊔ ( har ‘ 𝐴 ) ) ≈ ( 𝒫 𝒫 𝐴 × 𝒫 ( har ‘ 𝐴 ) ) ) |
| 20 | 2 | pwexd | ⊢ ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH ) → 𝒫 𝒫 𝐴 ∈ V ) |
| 21 | simp2 | ⊢ ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH ) → 𝐴 ∈ GCH ) | |
| 22 | harwdom | ⊢ ( 𝐴 ∈ GCH → ( har ‘ 𝐴 ) ≼* 𝒫 ( 𝐴 × 𝐴 ) ) | |
| 23 | wdompwdom | ⊢ ( ( har ‘ 𝐴 ) ≼* 𝒫 ( 𝐴 × 𝐴 ) → 𝒫 ( har ‘ 𝐴 ) ≼ 𝒫 𝒫 ( 𝐴 × 𝐴 ) ) | |
| 24 | 21 22 23 | 3syl | ⊢ ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH ) → 𝒫 ( har ‘ 𝐴 ) ≼ 𝒫 𝒫 ( 𝐴 × 𝐴 ) ) |
| 25 | xpdom2g | ⊢ ( ( 𝒫 𝒫 𝐴 ∈ V ∧ 𝒫 ( har ‘ 𝐴 ) ≼ 𝒫 𝒫 ( 𝐴 × 𝐴 ) ) → ( 𝒫 𝒫 𝐴 × 𝒫 ( har ‘ 𝐴 ) ) ≼ ( 𝒫 𝒫 𝐴 × 𝒫 𝒫 ( 𝐴 × 𝐴 ) ) ) | |
| 26 | 20 24 25 | syl2anc | ⊢ ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH ) → ( 𝒫 𝒫 𝐴 × 𝒫 ( har ‘ 𝐴 ) ) ≼ ( 𝒫 𝒫 𝐴 × 𝒫 𝒫 ( 𝐴 × 𝐴 ) ) ) |
| 27 | 21 21 | xpexd | ⊢ ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH ) → ( 𝐴 × 𝐴 ) ∈ V ) |
| 28 | 27 | pwexd | ⊢ ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH ) → 𝒫 ( 𝐴 × 𝐴 ) ∈ V ) |
| 29 | pwdjuen | ⊢ ( ( 𝒫 𝐴 ∈ GCH ∧ 𝒫 ( 𝐴 × 𝐴 ) ∈ V ) → 𝒫 ( 𝒫 𝐴 ⊔ 𝒫 ( 𝐴 × 𝐴 ) ) ≈ ( 𝒫 𝒫 𝐴 × 𝒫 𝒫 ( 𝐴 × 𝐴 ) ) ) | |
| 30 | 2 28 29 | syl2anc | ⊢ ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH ) → 𝒫 ( 𝒫 𝐴 ⊔ 𝒫 ( 𝐴 × 𝐴 ) ) ≈ ( 𝒫 𝒫 𝐴 × 𝒫 𝒫 ( 𝐴 × 𝐴 ) ) ) |
| 31 | 30 | ensymd | ⊢ ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH ) → ( 𝒫 𝒫 𝐴 × 𝒫 𝒫 ( 𝐴 × 𝐴 ) ) ≈ 𝒫 ( 𝒫 𝐴 ⊔ 𝒫 ( 𝐴 × 𝐴 ) ) ) |
| 32 | enrefg | ⊢ ( 𝒫 𝐴 ∈ GCH → 𝒫 𝐴 ≈ 𝒫 𝐴 ) | |
| 33 | 2 32 | syl | ⊢ ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH ) → 𝒫 𝐴 ≈ 𝒫 𝐴 ) |
| 34 | gchxpidm | ⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → ( 𝐴 × 𝐴 ) ≈ 𝐴 ) | |
| 35 | 21 8 34 | syl2anc | ⊢ ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH ) → ( 𝐴 × 𝐴 ) ≈ 𝐴 ) |
| 36 | pwen | ⊢ ( ( 𝐴 × 𝐴 ) ≈ 𝐴 → 𝒫 ( 𝐴 × 𝐴 ) ≈ 𝒫 𝐴 ) | |
| 37 | 35 36 | syl | ⊢ ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH ) → 𝒫 ( 𝐴 × 𝐴 ) ≈ 𝒫 𝐴 ) |
| 38 | djuen | ⊢ ( ( 𝒫 𝐴 ≈ 𝒫 𝐴 ∧ 𝒫 ( 𝐴 × 𝐴 ) ≈ 𝒫 𝐴 ) → ( 𝒫 𝐴 ⊔ 𝒫 ( 𝐴 × 𝐴 ) ) ≈ ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ) | |
| 39 | 33 37 38 | syl2anc | ⊢ ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH ) → ( 𝒫 𝐴 ⊔ 𝒫 ( 𝐴 × 𝐴 ) ) ≈ ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ) |
| 40 | gchdjuidm | ⊢ ( ( 𝒫 𝐴 ∈ GCH ∧ ¬ 𝒫 𝐴 ∈ Fin ) → ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ≈ 𝒫 𝐴 ) | |
| 41 | 2 10 40 | syl2anc | ⊢ ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH ) → ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ≈ 𝒫 𝐴 ) |
| 42 | entr | ⊢ ( ( ( 𝒫 𝐴 ⊔ 𝒫 ( 𝐴 × 𝐴 ) ) ≈ ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ∧ ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ≈ 𝒫 𝐴 ) → ( 𝒫 𝐴 ⊔ 𝒫 ( 𝐴 × 𝐴 ) ) ≈ 𝒫 𝐴 ) | |
| 43 | 39 41 42 | syl2anc | ⊢ ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH ) → ( 𝒫 𝐴 ⊔ 𝒫 ( 𝐴 × 𝐴 ) ) ≈ 𝒫 𝐴 ) |
| 44 | pwen | ⊢ ( ( 𝒫 𝐴 ⊔ 𝒫 ( 𝐴 × 𝐴 ) ) ≈ 𝒫 𝐴 → 𝒫 ( 𝒫 𝐴 ⊔ 𝒫 ( 𝐴 × 𝐴 ) ) ≈ 𝒫 𝒫 𝐴 ) | |
| 45 | 43 44 | syl | ⊢ ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH ) → 𝒫 ( 𝒫 𝐴 ⊔ 𝒫 ( 𝐴 × 𝐴 ) ) ≈ 𝒫 𝒫 𝐴 ) |
| 46 | entr | ⊢ ( ( ( 𝒫 𝒫 𝐴 × 𝒫 𝒫 ( 𝐴 × 𝐴 ) ) ≈ 𝒫 ( 𝒫 𝐴 ⊔ 𝒫 ( 𝐴 × 𝐴 ) ) ∧ 𝒫 ( 𝒫 𝐴 ⊔ 𝒫 ( 𝐴 × 𝐴 ) ) ≈ 𝒫 𝒫 𝐴 ) → ( 𝒫 𝒫 𝐴 × 𝒫 𝒫 ( 𝐴 × 𝐴 ) ) ≈ 𝒫 𝒫 𝐴 ) | |
| 47 | 31 45 46 | syl2anc | ⊢ ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH ) → ( 𝒫 𝒫 𝐴 × 𝒫 𝒫 ( 𝐴 × 𝐴 ) ) ≈ 𝒫 𝒫 𝐴 ) |
| 48 | domentr | ⊢ ( ( ( 𝒫 𝒫 𝐴 × 𝒫 ( har ‘ 𝐴 ) ) ≼ ( 𝒫 𝒫 𝐴 × 𝒫 𝒫 ( 𝐴 × 𝐴 ) ) ∧ ( 𝒫 𝒫 𝐴 × 𝒫 𝒫 ( 𝐴 × 𝐴 ) ) ≈ 𝒫 𝒫 𝐴 ) → ( 𝒫 𝒫 𝐴 × 𝒫 ( har ‘ 𝐴 ) ) ≼ 𝒫 𝒫 𝐴 ) | |
| 49 | 26 47 48 | syl2anc | ⊢ ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH ) → ( 𝒫 𝒫 𝐴 × 𝒫 ( har ‘ 𝐴 ) ) ≼ 𝒫 𝒫 𝐴 ) |
| 50 | endomtr | ⊢ ( ( 𝒫 ( 𝒫 𝐴 ⊔ ( har ‘ 𝐴 ) ) ≈ ( 𝒫 𝒫 𝐴 × 𝒫 ( har ‘ 𝐴 ) ) ∧ ( 𝒫 𝒫 𝐴 × 𝒫 ( har ‘ 𝐴 ) ) ≼ 𝒫 𝒫 𝐴 ) → 𝒫 ( 𝒫 𝐴 ⊔ ( har ‘ 𝐴 ) ) ≼ 𝒫 𝒫 𝐴 ) | |
| 51 | 19 49 50 | syl2anc | ⊢ ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH ) → 𝒫 ( 𝒫 𝐴 ⊔ ( har ‘ 𝐴 ) ) ≼ 𝒫 𝒫 𝐴 ) |
| 52 | sdomdomtr | ⊢ ( ( ( 𝒫 𝐴 ⊔ ( har ‘ 𝐴 ) ) ≺ 𝒫 ( 𝒫 𝐴 ⊔ ( har ‘ 𝐴 ) ) ∧ 𝒫 ( 𝒫 𝐴 ⊔ ( har ‘ 𝐴 ) ) ≼ 𝒫 𝒫 𝐴 ) → ( 𝒫 𝐴 ⊔ ( har ‘ 𝐴 ) ) ≺ 𝒫 𝒫 𝐴 ) | |
| 53 | 17 51 52 | syl2anc | ⊢ ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH ) → ( 𝒫 𝐴 ⊔ ( har ‘ 𝐴 ) ) ≺ 𝒫 𝒫 𝐴 ) |
| 54 | gchen1 | ⊢ ( ( ( 𝒫 𝐴 ∈ GCH ∧ ¬ 𝒫 𝐴 ∈ Fin ) ∧ ( 𝒫 𝐴 ≼ ( 𝒫 𝐴 ⊔ ( har ‘ 𝐴 ) ) ∧ ( 𝒫 𝐴 ⊔ ( har ‘ 𝐴 ) ) ≺ 𝒫 𝒫 𝐴 ) ) → 𝒫 𝐴 ≈ ( 𝒫 𝐴 ⊔ ( har ‘ 𝐴 ) ) ) | |
| 55 | 2 10 12 53 54 | syl22anc | ⊢ ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH ) → 𝒫 𝐴 ≈ ( 𝒫 𝐴 ⊔ ( har ‘ 𝐴 ) ) ) |
| 56 | djucomen | ⊢ ( ( 𝒫 𝐴 ∈ GCH ∧ ( har ‘ 𝐴 ) ∈ V ) → ( 𝒫 𝐴 ⊔ ( har ‘ 𝐴 ) ) ≈ ( ( har ‘ 𝐴 ) ⊔ 𝒫 𝐴 ) ) | |
| 57 | 2 13 56 | syl2anc | ⊢ ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH ) → ( 𝒫 𝐴 ⊔ ( har ‘ 𝐴 ) ) ≈ ( ( har ‘ 𝐴 ) ⊔ 𝒫 𝐴 ) ) |
| 58 | entr | ⊢ ( ( 𝒫 𝐴 ≈ ( 𝒫 𝐴 ⊔ ( har ‘ 𝐴 ) ) ∧ ( 𝒫 𝐴 ⊔ ( har ‘ 𝐴 ) ) ≈ ( ( har ‘ 𝐴 ) ⊔ 𝒫 𝐴 ) ) → 𝒫 𝐴 ≈ ( ( har ‘ 𝐴 ) ⊔ 𝒫 𝐴 ) ) | |
| 59 | 55 57 58 | syl2anc | ⊢ ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH ) → 𝒫 𝐴 ≈ ( ( har ‘ 𝐴 ) ⊔ 𝒫 𝐴 ) ) |
| 60 | 59 | ensymd | ⊢ ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH ) → ( ( har ‘ 𝐴 ) ⊔ 𝒫 𝐴 ) ≈ 𝒫 𝐴 ) |
| 61 | domentr | ⊢ ( ( ( har ‘ 𝐴 ) ≼ ( ( har ‘ 𝐴 ) ⊔ 𝒫 𝐴 ) ∧ ( ( har ‘ 𝐴 ) ⊔ 𝒫 𝐴 ) ≈ 𝒫 𝐴 ) → ( har ‘ 𝐴 ) ≼ 𝒫 𝐴 ) | |
| 62 | 4 60 61 | syl2anc | ⊢ ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH ) → ( har ‘ 𝐴 ) ≼ 𝒫 𝐴 ) |
| 63 | gchdjuidm | ⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ) | |
| 64 | 21 8 63 | syl2anc | ⊢ ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH ) → ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ) |
| 65 | pwen | ⊢ ( ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 → 𝒫 ( 𝐴 ⊔ 𝐴 ) ≈ 𝒫 𝐴 ) | |
| 66 | 64 65 | syl | ⊢ ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH ) → 𝒫 ( 𝐴 ⊔ 𝐴 ) ≈ 𝒫 𝐴 ) |
| 67 | djudoml | ⊢ ( ( 𝐴 ∈ GCH ∧ ( har ‘ 𝐴 ) ∈ On ) → 𝐴 ≼ ( 𝐴 ⊔ ( har ‘ 𝐴 ) ) ) | |
| 68 | 21 1 67 | sylancl | ⊢ ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH ) → 𝐴 ≼ ( 𝐴 ⊔ ( har ‘ 𝐴 ) ) ) |
| 69 | harndom | ⊢ ¬ ( har ‘ 𝐴 ) ≼ 𝐴 | |
| 70 | djudoml | ⊢ ( ( ( har ‘ 𝐴 ) ∈ On ∧ 𝐴 ∈ GCH ) → ( har ‘ 𝐴 ) ≼ ( ( har ‘ 𝐴 ) ⊔ 𝐴 ) ) | |
| 71 | 1 21 70 | sylancr | ⊢ ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH ) → ( har ‘ 𝐴 ) ≼ ( ( har ‘ 𝐴 ) ⊔ 𝐴 ) ) |
| 72 | djucomen | ⊢ ( ( ( har ‘ 𝐴 ) ∈ On ∧ 𝐴 ∈ GCH ) → ( ( har ‘ 𝐴 ) ⊔ 𝐴 ) ≈ ( 𝐴 ⊔ ( har ‘ 𝐴 ) ) ) | |
| 73 | 1 21 72 | sylancr | ⊢ ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH ) → ( ( har ‘ 𝐴 ) ⊔ 𝐴 ) ≈ ( 𝐴 ⊔ ( har ‘ 𝐴 ) ) ) |
| 74 | domentr | ⊢ ( ( ( har ‘ 𝐴 ) ≼ ( ( har ‘ 𝐴 ) ⊔ 𝐴 ) ∧ ( ( har ‘ 𝐴 ) ⊔ 𝐴 ) ≈ ( 𝐴 ⊔ ( har ‘ 𝐴 ) ) ) → ( har ‘ 𝐴 ) ≼ ( 𝐴 ⊔ ( har ‘ 𝐴 ) ) ) | |
| 75 | 71 73 74 | syl2anc | ⊢ ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH ) → ( har ‘ 𝐴 ) ≼ ( 𝐴 ⊔ ( har ‘ 𝐴 ) ) ) |
| 76 | domen2 | ⊢ ( 𝐴 ≈ ( 𝐴 ⊔ ( har ‘ 𝐴 ) ) → ( ( har ‘ 𝐴 ) ≼ 𝐴 ↔ ( har ‘ 𝐴 ) ≼ ( 𝐴 ⊔ ( har ‘ 𝐴 ) ) ) ) | |
| 77 | 75 76 | syl5ibrcom | ⊢ ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH ) → ( 𝐴 ≈ ( 𝐴 ⊔ ( har ‘ 𝐴 ) ) → ( har ‘ 𝐴 ) ≼ 𝐴 ) ) |
| 78 | 69 77 | mtoi | ⊢ ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH ) → ¬ 𝐴 ≈ ( 𝐴 ⊔ ( har ‘ 𝐴 ) ) ) |
| 79 | brsdom | ⊢ ( 𝐴 ≺ ( 𝐴 ⊔ ( har ‘ 𝐴 ) ) ↔ ( 𝐴 ≼ ( 𝐴 ⊔ ( har ‘ 𝐴 ) ) ∧ ¬ 𝐴 ≈ ( 𝐴 ⊔ ( har ‘ 𝐴 ) ) ) ) | |
| 80 | 68 78 79 | sylanbrc | ⊢ ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH ) → 𝐴 ≺ ( 𝐴 ⊔ ( har ‘ 𝐴 ) ) ) |
| 81 | canth2g | ⊢ ( 𝐴 ∈ GCH → 𝐴 ≺ 𝒫 𝐴 ) | |
| 82 | sdomdom | ⊢ ( 𝐴 ≺ 𝒫 𝐴 → 𝐴 ≼ 𝒫 𝐴 ) | |
| 83 | 21 81 82 | 3syl | ⊢ ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH ) → 𝐴 ≼ 𝒫 𝐴 ) |
| 84 | djudom1 | ⊢ ( ( 𝐴 ≼ 𝒫 𝐴 ∧ ( har ‘ 𝐴 ) ∈ On ) → ( 𝐴 ⊔ ( har ‘ 𝐴 ) ) ≼ ( 𝒫 𝐴 ⊔ ( har ‘ 𝐴 ) ) ) | |
| 85 | 83 1 84 | sylancl | ⊢ ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH ) → ( 𝐴 ⊔ ( har ‘ 𝐴 ) ) ≼ ( 𝒫 𝐴 ⊔ ( har ‘ 𝐴 ) ) ) |
| 86 | djudom2 | ⊢ ( ( ( har ‘ 𝐴 ) ≼ 𝒫 𝐴 ∧ 𝒫 𝐴 ∈ GCH ) → ( 𝒫 𝐴 ⊔ ( har ‘ 𝐴 ) ) ≼ ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ) | |
| 87 | 62 2 86 | syl2anc | ⊢ ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH ) → ( 𝒫 𝐴 ⊔ ( har ‘ 𝐴 ) ) ≼ ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ) |
| 88 | domtr | ⊢ ( ( ( 𝐴 ⊔ ( har ‘ 𝐴 ) ) ≼ ( 𝒫 𝐴 ⊔ ( har ‘ 𝐴 ) ) ∧ ( 𝒫 𝐴 ⊔ ( har ‘ 𝐴 ) ) ≼ ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ) → ( 𝐴 ⊔ ( har ‘ 𝐴 ) ) ≼ ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ) | |
| 89 | 85 87 88 | syl2anc | ⊢ ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH ) → ( 𝐴 ⊔ ( har ‘ 𝐴 ) ) ≼ ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ) |
| 90 | domentr | ⊢ ( ( ( 𝐴 ⊔ ( har ‘ 𝐴 ) ) ≼ ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ∧ ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ≈ 𝒫 𝐴 ) → ( 𝐴 ⊔ ( har ‘ 𝐴 ) ) ≼ 𝒫 𝐴 ) | |
| 91 | 89 41 90 | syl2anc | ⊢ ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH ) → ( 𝐴 ⊔ ( har ‘ 𝐴 ) ) ≼ 𝒫 𝐴 ) |
| 92 | gchen2 | ⊢ ( ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) ∧ ( 𝐴 ≺ ( 𝐴 ⊔ ( har ‘ 𝐴 ) ) ∧ ( 𝐴 ⊔ ( har ‘ 𝐴 ) ) ≼ 𝒫 𝐴 ) ) → ( 𝐴 ⊔ ( har ‘ 𝐴 ) ) ≈ 𝒫 𝐴 ) | |
| 93 | 21 8 80 91 92 | syl22anc | ⊢ ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH ) → ( 𝐴 ⊔ ( har ‘ 𝐴 ) ) ≈ 𝒫 𝐴 ) |
| 94 | 93 | ensymd | ⊢ ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH ) → 𝒫 𝐴 ≈ ( 𝐴 ⊔ ( har ‘ 𝐴 ) ) ) |
| 95 | entr | ⊢ ( ( 𝒫 ( 𝐴 ⊔ 𝐴 ) ≈ 𝒫 𝐴 ∧ 𝒫 𝐴 ≈ ( 𝐴 ⊔ ( har ‘ 𝐴 ) ) ) → 𝒫 ( 𝐴 ⊔ 𝐴 ) ≈ ( 𝐴 ⊔ ( har ‘ 𝐴 ) ) ) | |
| 96 | 66 94 95 | syl2anc | ⊢ ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH ) → 𝒫 ( 𝐴 ⊔ 𝐴 ) ≈ ( 𝐴 ⊔ ( har ‘ 𝐴 ) ) ) |
| 97 | endom | ⊢ ( 𝒫 ( 𝐴 ⊔ 𝐴 ) ≈ ( 𝐴 ⊔ ( har ‘ 𝐴 ) ) → 𝒫 ( 𝐴 ⊔ 𝐴 ) ≼ ( 𝐴 ⊔ ( har ‘ 𝐴 ) ) ) | |
| 98 | pwdjudom | ⊢ ( 𝒫 ( 𝐴 ⊔ 𝐴 ) ≼ ( 𝐴 ⊔ ( har ‘ 𝐴 ) ) → 𝒫 𝐴 ≼ ( har ‘ 𝐴 ) ) | |
| 99 | 96 97 98 | 3syl | ⊢ ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH ) → 𝒫 𝐴 ≼ ( har ‘ 𝐴 ) ) |
| 100 | sbth | ⊢ ( ( ( har ‘ 𝐴 ) ≼ 𝒫 𝐴 ∧ 𝒫 𝐴 ≼ ( har ‘ 𝐴 ) ) → ( har ‘ 𝐴 ) ≈ 𝒫 𝐴 ) | |
| 101 | 62 99 100 | syl2anc | ⊢ ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH ) → ( har ‘ 𝐴 ) ≈ 𝒫 𝐴 ) |