This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cantor's theorem with the sethood requirement expressed as an antecedent. Theorem 23 of Suppes p. 97. (Contributed by NM, 7-Nov-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | canth2g | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ≺ 𝒫 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pweq | ⊢ ( 𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴 ) | |
| 2 | breq12 | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝒫 𝑥 = 𝒫 𝐴 ) → ( 𝑥 ≺ 𝒫 𝑥 ↔ 𝐴 ≺ 𝒫 𝐴 ) ) | |
| 3 | 1 2 | mpdan | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ≺ 𝒫 𝑥 ↔ 𝐴 ≺ 𝒫 𝐴 ) ) |
| 4 | vex | ⊢ 𝑥 ∈ V | |
| 5 | 4 | canth2 | ⊢ 𝑥 ≺ 𝒫 𝑥 |
| 6 | 3 5 | vtoclg | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ≺ 𝒫 𝐴 ) |