This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equinumerosity is reflexive. Theorem 1 of Suppes p. 92. (Contributed by NM, 18-Jun-1998) (Revised by Mario Carneiro, 26-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | enrefg | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ≈ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1oi | ⊢ ( I ↾ 𝐴 ) : 𝐴 –1-1-onto→ 𝐴 | |
| 2 | f1oen2g | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ∧ ( I ↾ 𝐴 ) : 𝐴 –1-1-onto→ 𝐴 ) → 𝐴 ≈ 𝐴 ) | |
| 3 | 1 2 | mp3an3 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) → 𝐴 ≈ 𝐴 ) |
| 4 | 3 | anidms | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ≈ 𝐴 ) |