This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Weak dominance strengthens to usual dominance on the power sets. (Contributed by Stefan O'Rear, 11-Feb-2015) (Revised by Mario Carneiro, 5-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wdompwdom | ⊢ ( 𝑋 ≼* 𝑌 → 𝒫 𝑋 ≼ 𝒫 𝑌 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relwdom | ⊢ Rel ≼* | |
| 2 | 1 | brrelex2i | ⊢ ( 𝑋 ≼* 𝑌 → 𝑌 ∈ V ) |
| 3 | 2 | pwexd | ⊢ ( 𝑋 ≼* 𝑌 → 𝒫 𝑌 ∈ V ) |
| 4 | 0ss | ⊢ ∅ ⊆ 𝑌 | |
| 5 | 4 | sspwi | ⊢ 𝒫 ∅ ⊆ 𝒫 𝑌 |
| 6 | ssdomg | ⊢ ( 𝒫 𝑌 ∈ V → ( 𝒫 ∅ ⊆ 𝒫 𝑌 → 𝒫 ∅ ≼ 𝒫 𝑌 ) ) | |
| 7 | 3 5 6 | mpisyl | ⊢ ( 𝑋 ≼* 𝑌 → 𝒫 ∅ ≼ 𝒫 𝑌 ) |
| 8 | pweq | ⊢ ( 𝑋 = ∅ → 𝒫 𝑋 = 𝒫 ∅ ) | |
| 9 | 8 | breq1d | ⊢ ( 𝑋 = ∅ → ( 𝒫 𝑋 ≼ 𝒫 𝑌 ↔ 𝒫 ∅ ≼ 𝒫 𝑌 ) ) |
| 10 | 7 9 | imbitrrid | ⊢ ( 𝑋 = ∅ → ( 𝑋 ≼* 𝑌 → 𝒫 𝑋 ≼ 𝒫 𝑌 ) ) |
| 11 | brwdomn0 | ⊢ ( 𝑋 ≠ ∅ → ( 𝑋 ≼* 𝑌 ↔ ∃ 𝑧 𝑧 : 𝑌 –onto→ 𝑋 ) ) | |
| 12 | vex | ⊢ 𝑧 ∈ V | |
| 13 | fopwdom | ⊢ ( ( 𝑧 ∈ V ∧ 𝑧 : 𝑌 –onto→ 𝑋 ) → 𝒫 𝑋 ≼ 𝒫 𝑌 ) | |
| 14 | 12 13 | mpan | ⊢ ( 𝑧 : 𝑌 –onto→ 𝑋 → 𝒫 𝑋 ≼ 𝒫 𝑌 ) |
| 15 | 14 | exlimiv | ⊢ ( ∃ 𝑧 𝑧 : 𝑌 –onto→ 𝑋 → 𝒫 𝑋 ≼ 𝒫 𝑌 ) |
| 16 | 11 15 | biimtrdi | ⊢ ( 𝑋 ≠ ∅ → ( 𝑋 ≼* 𝑌 → 𝒫 𝑋 ≼ 𝒫 𝑌 ) ) |
| 17 | 10 16 | pm2.61ine | ⊢ ( 𝑋 ≼* 𝑌 → 𝒫 𝑋 ≼ 𝒫 𝑌 ) |