This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem harcl

Description: Values of the Hartogs function are ordinals (closure of the Hartogs function in the ordinals). (Contributed by Stefan O'Rear, 11-Feb-2015)

Ref Expression
Assertion harcl ( har ‘ 𝑋 ) ∈ On

Proof

Step Hyp Ref Expression
1 harf har : V ⟶ On
2 0elon ∅ ∈ On
3 1 2 f0cli ( har ‘ 𝑋 ) ∈ On