This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An infinite GCH-set is idempotent under cardinal product. Part of Lemma 2.2 of KanamoriPincus p. 419. (Contributed by Mario Carneiro, 31-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gchxpidm | ⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → ( 𝐴 × 𝐴 ) ≈ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex | ⊢ ∅ ∈ V | |
| 2 | 1 | a1i | ⊢ ( ¬ 𝐴 ∈ Fin → ∅ ∈ V ) |
| 3 | xpsneng | ⊢ ( ( 𝐴 ∈ GCH ∧ ∅ ∈ V ) → ( 𝐴 × { ∅ } ) ≈ 𝐴 ) | |
| 4 | 2 3 | sylan2 | ⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → ( 𝐴 × { ∅ } ) ≈ 𝐴 ) |
| 5 | 4 | ensymd | ⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → 𝐴 ≈ ( 𝐴 × { ∅ } ) ) |
| 6 | df1o2 | ⊢ 1o = { ∅ } | |
| 7 | id | ⊢ ( 𝐴 = ∅ → 𝐴 = ∅ ) | |
| 8 | 0fi | ⊢ ∅ ∈ Fin | |
| 9 | 7 8 | eqeltrdi | ⊢ ( 𝐴 = ∅ → 𝐴 ∈ Fin ) |
| 10 | 9 | necon3bi | ⊢ ( ¬ 𝐴 ∈ Fin → 𝐴 ≠ ∅ ) |
| 11 | 10 | adantl | ⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → 𝐴 ≠ ∅ ) |
| 12 | 0sdomg | ⊢ ( 𝐴 ∈ GCH → ( ∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅ ) ) | |
| 13 | 12 | adantr | ⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → ( ∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅ ) ) |
| 14 | 11 13 | mpbird | ⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → ∅ ≺ 𝐴 ) |
| 15 | 0sdom1dom | ⊢ ( ∅ ≺ 𝐴 ↔ 1o ≼ 𝐴 ) | |
| 16 | 14 15 | sylib | ⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → 1o ≼ 𝐴 ) |
| 17 | 6 16 | eqbrtrrid | ⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → { ∅ } ≼ 𝐴 ) |
| 18 | xpdom2g | ⊢ ( ( 𝐴 ∈ GCH ∧ { ∅ } ≼ 𝐴 ) → ( 𝐴 × { ∅ } ) ≼ ( 𝐴 × 𝐴 ) ) | |
| 19 | 17 18 | syldan | ⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → ( 𝐴 × { ∅ } ) ≼ ( 𝐴 × 𝐴 ) ) |
| 20 | endomtr | ⊢ ( ( 𝐴 ≈ ( 𝐴 × { ∅ } ) ∧ ( 𝐴 × { ∅ } ) ≼ ( 𝐴 × 𝐴 ) ) → 𝐴 ≼ ( 𝐴 × 𝐴 ) ) | |
| 21 | 5 19 20 | syl2anc | ⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → 𝐴 ≼ ( 𝐴 × 𝐴 ) ) |
| 22 | canth2g | ⊢ ( 𝐴 ∈ GCH → 𝐴 ≺ 𝒫 𝐴 ) | |
| 23 | 22 | adantr | ⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → 𝐴 ≺ 𝒫 𝐴 ) |
| 24 | sdomdom | ⊢ ( 𝐴 ≺ 𝒫 𝐴 → 𝐴 ≼ 𝒫 𝐴 ) | |
| 25 | 23 24 | syl | ⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → 𝐴 ≼ 𝒫 𝐴 ) |
| 26 | xpdom1g | ⊢ ( ( 𝐴 ∈ GCH ∧ 𝐴 ≼ 𝒫 𝐴 ) → ( 𝐴 × 𝐴 ) ≼ ( 𝒫 𝐴 × 𝐴 ) ) | |
| 27 | 25 26 | syldan | ⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → ( 𝐴 × 𝐴 ) ≼ ( 𝒫 𝐴 × 𝐴 ) ) |
| 28 | pwexg | ⊢ ( 𝐴 ∈ GCH → 𝒫 𝐴 ∈ V ) | |
| 29 | 28 | adantr | ⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → 𝒫 𝐴 ∈ V ) |
| 30 | xpdom2g | ⊢ ( ( 𝒫 𝐴 ∈ V ∧ 𝐴 ≼ 𝒫 𝐴 ) → ( 𝒫 𝐴 × 𝐴 ) ≼ ( 𝒫 𝐴 × 𝒫 𝐴 ) ) | |
| 31 | 29 25 30 | syl2anc | ⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → ( 𝒫 𝐴 × 𝐴 ) ≼ ( 𝒫 𝐴 × 𝒫 𝐴 ) ) |
| 32 | domtr | ⊢ ( ( ( 𝐴 × 𝐴 ) ≼ ( 𝒫 𝐴 × 𝐴 ) ∧ ( 𝒫 𝐴 × 𝐴 ) ≼ ( 𝒫 𝐴 × 𝒫 𝐴 ) ) → ( 𝐴 × 𝐴 ) ≼ ( 𝒫 𝐴 × 𝒫 𝐴 ) ) | |
| 33 | 27 31 32 | syl2anc | ⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → ( 𝐴 × 𝐴 ) ≼ ( 𝒫 𝐴 × 𝒫 𝐴 ) ) |
| 34 | simpl | ⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → 𝐴 ∈ GCH ) | |
| 35 | pwdjuen | ⊢ ( ( 𝐴 ∈ GCH ∧ 𝐴 ∈ GCH ) → 𝒫 ( 𝐴 ⊔ 𝐴 ) ≈ ( 𝒫 𝐴 × 𝒫 𝐴 ) ) | |
| 36 | 34 35 | syldan | ⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → 𝒫 ( 𝐴 ⊔ 𝐴 ) ≈ ( 𝒫 𝐴 × 𝒫 𝐴 ) ) |
| 37 | 36 | ensymd | ⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → ( 𝒫 𝐴 × 𝒫 𝐴 ) ≈ 𝒫 ( 𝐴 ⊔ 𝐴 ) ) |
| 38 | gchdjuidm | ⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ) | |
| 39 | pwen | ⊢ ( ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 → 𝒫 ( 𝐴 ⊔ 𝐴 ) ≈ 𝒫 𝐴 ) | |
| 40 | 38 39 | syl | ⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → 𝒫 ( 𝐴 ⊔ 𝐴 ) ≈ 𝒫 𝐴 ) |
| 41 | entr | ⊢ ( ( ( 𝒫 𝐴 × 𝒫 𝐴 ) ≈ 𝒫 ( 𝐴 ⊔ 𝐴 ) ∧ 𝒫 ( 𝐴 ⊔ 𝐴 ) ≈ 𝒫 𝐴 ) → ( 𝒫 𝐴 × 𝒫 𝐴 ) ≈ 𝒫 𝐴 ) | |
| 42 | 37 40 41 | syl2anc | ⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → ( 𝒫 𝐴 × 𝒫 𝐴 ) ≈ 𝒫 𝐴 ) |
| 43 | domentr | ⊢ ( ( ( 𝐴 × 𝐴 ) ≼ ( 𝒫 𝐴 × 𝒫 𝐴 ) ∧ ( 𝒫 𝐴 × 𝒫 𝐴 ) ≈ 𝒫 𝐴 ) → ( 𝐴 × 𝐴 ) ≼ 𝒫 𝐴 ) | |
| 44 | 33 42 43 | syl2anc | ⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → ( 𝐴 × 𝐴 ) ≼ 𝒫 𝐴 ) |
| 45 | gchinf | ⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → ω ≼ 𝐴 ) | |
| 46 | pwxpndom | ⊢ ( ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ ( 𝐴 × 𝐴 ) ) | |
| 47 | 45 46 | syl | ⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → ¬ 𝒫 𝐴 ≼ ( 𝐴 × 𝐴 ) ) |
| 48 | ensym | ⊢ ( ( 𝐴 × 𝐴 ) ≈ 𝒫 𝐴 → 𝒫 𝐴 ≈ ( 𝐴 × 𝐴 ) ) | |
| 49 | endom | ⊢ ( 𝒫 𝐴 ≈ ( 𝐴 × 𝐴 ) → 𝒫 𝐴 ≼ ( 𝐴 × 𝐴 ) ) | |
| 50 | 48 49 | syl | ⊢ ( ( 𝐴 × 𝐴 ) ≈ 𝒫 𝐴 → 𝒫 𝐴 ≼ ( 𝐴 × 𝐴 ) ) |
| 51 | 47 50 | nsyl | ⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → ¬ ( 𝐴 × 𝐴 ) ≈ 𝒫 𝐴 ) |
| 52 | brsdom | ⊢ ( ( 𝐴 × 𝐴 ) ≺ 𝒫 𝐴 ↔ ( ( 𝐴 × 𝐴 ) ≼ 𝒫 𝐴 ∧ ¬ ( 𝐴 × 𝐴 ) ≈ 𝒫 𝐴 ) ) | |
| 53 | 44 51 52 | sylanbrc | ⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → ( 𝐴 × 𝐴 ) ≺ 𝒫 𝐴 ) |
| 54 | 21 53 | jca | ⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → ( 𝐴 ≼ ( 𝐴 × 𝐴 ) ∧ ( 𝐴 × 𝐴 ) ≺ 𝒫 𝐴 ) ) |
| 55 | gchen1 | ⊢ ( ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) ∧ ( 𝐴 ≼ ( 𝐴 × 𝐴 ) ∧ ( 𝐴 × 𝐴 ) ≺ 𝒫 𝐴 ) ) → 𝐴 ≈ ( 𝐴 × 𝐴 ) ) | |
| 56 | 54 55 | mpdan | ⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → 𝐴 ≈ ( 𝐴 × 𝐴 ) ) |
| 57 | 56 | ensymd | ⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → ( 𝐴 × 𝐴 ) ≈ 𝐴 ) |