This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A "local" form of gchac . If A and ~P A are GCH-sets, then ~P A is well-orderable. The proof is due to Specker. Theorem 2.1 of KanamoriPincus p. 419. (Contributed by Mario Carneiro, 15-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gchacg | ⊢ ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH ) → 𝒫 𝐴 ∈ dom card ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | harcl | ⊢ ( har ‘ 𝐴 ) ∈ On | |
| 2 | gchhar | ⊢ ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH ) → ( har ‘ 𝐴 ) ≈ 𝒫 𝐴 ) | |
| 3 | isnumi | ⊢ ( ( ( har ‘ 𝐴 ) ∈ On ∧ ( har ‘ 𝐴 ) ≈ 𝒫 𝐴 ) → 𝒫 𝐴 ∈ dom card ) | |
| 4 | 1 2 3 | sylancr | ⊢ ( ( ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH ) → 𝒫 𝐴 ∈ dom card ) |