This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If A < B <_ ~P A , and A is an infinite GCH-set, then B = ~P A in cardinality. (Contributed by Mario Carneiro, 15-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gchen2 | ⊢ ( ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) ∧ ( 𝐴 ≺ 𝐵 ∧ 𝐵 ≼ 𝒫 𝐴 ) ) → 𝐵 ≈ 𝒫 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprr | ⊢ ( ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) ∧ ( 𝐴 ≺ 𝐵 ∧ 𝐵 ≼ 𝒫 𝐴 ) ) → 𝐵 ≼ 𝒫 𝐴 ) | |
| 2 | gchi | ⊢ ( ( 𝐴 ∈ GCH ∧ 𝐴 ≺ 𝐵 ∧ 𝐵 ≺ 𝒫 𝐴 ) → 𝐴 ∈ Fin ) | |
| 3 | 2 | 3expia | ⊢ ( ( 𝐴 ∈ GCH ∧ 𝐴 ≺ 𝐵 ) → ( 𝐵 ≺ 𝒫 𝐴 → 𝐴 ∈ Fin ) ) |
| 4 | 3 | con3dimp | ⊢ ( ( ( 𝐴 ∈ GCH ∧ 𝐴 ≺ 𝐵 ) ∧ ¬ 𝐴 ∈ Fin ) → ¬ 𝐵 ≺ 𝒫 𝐴 ) |
| 5 | 4 | an32s | ⊢ ( ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐴 ≺ 𝐵 ) → ¬ 𝐵 ≺ 𝒫 𝐴 ) |
| 6 | 5 | adantrr | ⊢ ( ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) ∧ ( 𝐴 ≺ 𝐵 ∧ 𝐵 ≼ 𝒫 𝐴 ) ) → ¬ 𝐵 ≺ 𝒫 𝐴 ) |
| 7 | bren2 | ⊢ ( 𝐵 ≈ 𝒫 𝐴 ↔ ( 𝐵 ≼ 𝒫 𝐴 ∧ ¬ 𝐵 ≺ 𝒫 𝐴 ) ) | |
| 8 | 1 6 7 | sylanbrc | ⊢ ( ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) ∧ ( 𝐴 ≺ 𝐵 ∧ 𝐵 ≼ 𝒫 𝐴 ) ) → 𝐵 ≈ 𝒫 𝐴 ) |