This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A property of dominance over a powerset, and a main lemma for gchac . Similar to Lemma 2.3 of KanamoriPincus p. 420. (Contributed by Mario Carneiro, 15-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pwdjudom | ⊢ ( 𝒫 ( 𝐴 ⊔ 𝐴 ) ≼ ( 𝐴 ⊔ 𝐵 ) → 𝒫 𝐴 ≼ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | canthwdom | ⊢ ¬ 𝒫 𝐴 ≼* 𝐴 | |
| 2 | 0ex | ⊢ ∅ ∈ V | |
| 3 | reldom | ⊢ Rel ≼ | |
| 4 | 3 | brrelex2i | ⊢ ( 𝒫 ( 𝐴 ⊔ 𝐴 ) ≼ ( 𝐴 ⊔ 𝐵 ) → ( 𝐴 ⊔ 𝐵 ) ∈ V ) |
| 5 | djuexb | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ↔ ( 𝐴 ⊔ 𝐵 ) ∈ V ) | |
| 6 | 4 5 | sylibr | ⊢ ( 𝒫 ( 𝐴 ⊔ 𝐴 ) ≼ ( 𝐴 ⊔ 𝐵 ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |
| 7 | 6 | simpld | ⊢ ( 𝒫 ( 𝐴 ⊔ 𝐴 ) ≼ ( 𝐴 ⊔ 𝐵 ) → 𝐴 ∈ V ) |
| 8 | xpsnen2g | ⊢ ( ( ∅ ∈ V ∧ 𝐴 ∈ V ) → ( { ∅ } × 𝐴 ) ≈ 𝐴 ) | |
| 9 | 2 7 8 | sylancr | ⊢ ( 𝒫 ( 𝐴 ⊔ 𝐴 ) ≼ ( 𝐴 ⊔ 𝐵 ) → ( { ∅ } × 𝐴 ) ≈ 𝐴 ) |
| 10 | endom | ⊢ ( ( { ∅ } × 𝐴 ) ≈ 𝐴 → ( { ∅ } × 𝐴 ) ≼ 𝐴 ) | |
| 11 | domwdom | ⊢ ( ( { ∅ } × 𝐴 ) ≼ 𝐴 → ( { ∅ } × 𝐴 ) ≼* 𝐴 ) | |
| 12 | wdomtr | ⊢ ( ( 𝒫 𝐴 ≼* ( { ∅ } × 𝐴 ) ∧ ( { ∅ } × 𝐴 ) ≼* 𝐴 ) → 𝒫 𝐴 ≼* 𝐴 ) | |
| 13 | 12 | expcom | ⊢ ( ( { ∅ } × 𝐴 ) ≼* 𝐴 → ( 𝒫 𝐴 ≼* ( { ∅ } × 𝐴 ) → 𝒫 𝐴 ≼* 𝐴 ) ) |
| 14 | 9 10 11 13 | 4syl | ⊢ ( 𝒫 ( 𝐴 ⊔ 𝐴 ) ≼ ( 𝐴 ⊔ 𝐵 ) → ( 𝒫 𝐴 ≼* ( { ∅ } × 𝐴 ) → 𝒫 𝐴 ≼* 𝐴 ) ) |
| 15 | 1 14 | mtoi | ⊢ ( 𝒫 ( 𝐴 ⊔ 𝐴 ) ≼ ( 𝐴 ⊔ 𝐵 ) → ¬ 𝒫 𝐴 ≼* ( { ∅ } × 𝐴 ) ) |
| 16 | pwdjuen | ⊢ ( ( 𝐴 ∈ V ∧ 𝐴 ∈ V ) → 𝒫 ( 𝐴 ⊔ 𝐴 ) ≈ ( 𝒫 𝐴 × 𝒫 𝐴 ) ) | |
| 17 | 7 7 16 | syl2anc | ⊢ ( 𝒫 ( 𝐴 ⊔ 𝐴 ) ≼ ( 𝐴 ⊔ 𝐵 ) → 𝒫 ( 𝐴 ⊔ 𝐴 ) ≈ ( 𝒫 𝐴 × 𝒫 𝐴 ) ) |
| 18 | domen1 | ⊢ ( 𝒫 ( 𝐴 ⊔ 𝐴 ) ≈ ( 𝒫 𝐴 × 𝒫 𝐴 ) → ( 𝒫 ( 𝐴 ⊔ 𝐴 ) ≼ ( 𝐴 ⊔ 𝐵 ) ↔ ( 𝒫 𝐴 × 𝒫 𝐴 ) ≼ ( 𝐴 ⊔ 𝐵 ) ) ) | |
| 19 | 17 18 | syl | ⊢ ( 𝒫 ( 𝐴 ⊔ 𝐴 ) ≼ ( 𝐴 ⊔ 𝐵 ) → ( 𝒫 ( 𝐴 ⊔ 𝐴 ) ≼ ( 𝐴 ⊔ 𝐵 ) ↔ ( 𝒫 𝐴 × 𝒫 𝐴 ) ≼ ( 𝐴 ⊔ 𝐵 ) ) ) |
| 20 | 19 | ibi | ⊢ ( 𝒫 ( 𝐴 ⊔ 𝐴 ) ≼ ( 𝐴 ⊔ 𝐵 ) → ( 𝒫 𝐴 × 𝒫 𝐴 ) ≼ ( 𝐴 ⊔ 𝐵 ) ) |
| 21 | df-dju | ⊢ ( 𝐴 ⊔ 𝐵 ) = ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐵 ) ) | |
| 22 | 20 21 | breqtrdi | ⊢ ( 𝒫 ( 𝐴 ⊔ 𝐴 ) ≼ ( 𝐴 ⊔ 𝐵 ) → ( 𝒫 𝐴 × 𝒫 𝐴 ) ≼ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐵 ) ) ) |
| 23 | unxpwdom | ⊢ ( ( 𝒫 𝐴 × 𝒫 𝐴 ) ≼ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐵 ) ) → ( 𝒫 𝐴 ≼* ( { ∅ } × 𝐴 ) ∨ 𝒫 𝐴 ≼ ( { 1o } × 𝐵 ) ) ) | |
| 24 | 22 23 | syl | ⊢ ( 𝒫 ( 𝐴 ⊔ 𝐴 ) ≼ ( 𝐴 ⊔ 𝐵 ) → ( 𝒫 𝐴 ≼* ( { ∅ } × 𝐴 ) ∨ 𝒫 𝐴 ≼ ( { 1o } × 𝐵 ) ) ) |
| 25 | 24 | ord | ⊢ ( 𝒫 ( 𝐴 ⊔ 𝐴 ) ≼ ( 𝐴 ⊔ 𝐵 ) → ( ¬ 𝒫 𝐴 ≼* ( { ∅ } × 𝐴 ) → 𝒫 𝐴 ≼ ( { 1o } × 𝐵 ) ) ) |
| 26 | 15 25 | mpd | ⊢ ( 𝒫 ( 𝐴 ⊔ 𝐴 ) ≼ ( 𝐴 ⊔ 𝐵 ) → 𝒫 𝐴 ≼ ( { 1o } × 𝐵 ) ) |
| 27 | 1on | ⊢ 1o ∈ On | |
| 28 | 6 | simprd | ⊢ ( 𝒫 ( 𝐴 ⊔ 𝐴 ) ≼ ( 𝐴 ⊔ 𝐵 ) → 𝐵 ∈ V ) |
| 29 | xpsnen2g | ⊢ ( ( 1o ∈ On ∧ 𝐵 ∈ V ) → ( { 1o } × 𝐵 ) ≈ 𝐵 ) | |
| 30 | 27 28 29 | sylancr | ⊢ ( 𝒫 ( 𝐴 ⊔ 𝐴 ) ≼ ( 𝐴 ⊔ 𝐵 ) → ( { 1o } × 𝐵 ) ≈ 𝐵 ) |
| 31 | domentr | ⊢ ( ( 𝒫 𝐴 ≼ ( { 1o } × 𝐵 ) ∧ ( { 1o } × 𝐵 ) ≈ 𝐵 ) → 𝒫 𝐴 ≼ 𝐵 ) | |
| 32 | 26 30 31 | syl2anc | ⊢ ( 𝒫 ( 𝐴 ⊔ 𝐴 ) ≼ ( 𝐴 ⊔ 𝐵 ) → 𝒫 𝐴 ≼ 𝐵 ) |