This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Strict dominance relation, meaning " B is strictly greater in size than A ". Definition of Mendelson p. 255. (Contributed by NM, 25-Jun-1998)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | brsdom | ⊢ ( 𝐴 ≺ 𝐵 ↔ ( 𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≈ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sdom | ⊢ ≺ = ( ≼ ∖ ≈ ) | |
| 2 | 1 | eleq2i | ⊢ ( 〈 𝐴 , 𝐵 〉 ∈ ≺ ↔ 〈 𝐴 , 𝐵 〉 ∈ ( ≼ ∖ ≈ ) ) |
| 3 | df-br | ⊢ ( 𝐴 ≺ 𝐵 ↔ 〈 𝐴 , 𝐵 〉 ∈ ≺ ) | |
| 4 | df-br | ⊢ ( 𝐴 ≼ 𝐵 ↔ 〈 𝐴 , 𝐵 〉 ∈ ≼ ) | |
| 5 | df-br | ⊢ ( 𝐴 ≈ 𝐵 ↔ 〈 𝐴 , 𝐵 〉 ∈ ≈ ) | |
| 6 | 5 | notbii | ⊢ ( ¬ 𝐴 ≈ 𝐵 ↔ ¬ 〈 𝐴 , 𝐵 〉 ∈ ≈ ) |
| 7 | 4 6 | anbi12i | ⊢ ( ( 𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≈ 𝐵 ) ↔ ( 〈 𝐴 , 𝐵 〉 ∈ ≼ ∧ ¬ 〈 𝐴 , 𝐵 〉 ∈ ≈ ) ) |
| 8 | eldif | ⊢ ( 〈 𝐴 , 𝐵 〉 ∈ ( ≼ ∖ ≈ ) ↔ ( 〈 𝐴 , 𝐵 〉 ∈ ≼ ∧ ¬ 〈 𝐴 , 𝐵 〉 ∈ ≈ ) ) | |
| 9 | 7 8 | bitr4i | ⊢ ( ( 𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≈ 𝐵 ) ↔ 〈 𝐴 , 𝐵 〉 ∈ ( ≼ ∖ ≈ ) ) |
| 10 | 2 3 9 | 3bitr4i | ⊢ ( 𝐴 ≺ 𝐵 ↔ ( 𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≈ 𝐵 ) ) |