This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Generalized Continuum Hypothesis implies the Axiom of Choice. The original proof is due to Sierpiński (1947); we use a refinement of Sierpiński's result due to Specker. (Contributed by Mario Carneiro, 15-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gchac | ⊢ ( GCH = V → CHOICE ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | ⊢ 𝑥 ∈ V | |
| 2 | omex | ⊢ ω ∈ V | |
| 3 | 1 2 | unex | ⊢ ( 𝑥 ∪ ω ) ∈ V |
| 4 | ssun2 | ⊢ ω ⊆ ( 𝑥 ∪ ω ) | |
| 5 | ssdomg | ⊢ ( ( 𝑥 ∪ ω ) ∈ V → ( ω ⊆ ( 𝑥 ∪ ω ) → ω ≼ ( 𝑥 ∪ ω ) ) ) | |
| 6 | 3 4 5 | mp2 | ⊢ ω ≼ ( 𝑥 ∪ ω ) |
| 7 | id | ⊢ ( GCH = V → GCH = V ) | |
| 8 | 3 7 | eleqtrrid | ⊢ ( GCH = V → ( 𝑥 ∪ ω ) ∈ GCH ) |
| 9 | 3 | pwex | ⊢ 𝒫 ( 𝑥 ∪ ω ) ∈ V |
| 10 | 9 7 | eleqtrrid | ⊢ ( GCH = V → 𝒫 ( 𝑥 ∪ ω ) ∈ GCH ) |
| 11 | gchacg | ⊢ ( ( ω ≼ ( 𝑥 ∪ ω ) ∧ ( 𝑥 ∪ ω ) ∈ GCH ∧ 𝒫 ( 𝑥 ∪ ω ) ∈ GCH ) → 𝒫 ( 𝑥 ∪ ω ) ∈ dom card ) | |
| 12 | 6 8 10 11 | mp3an2i | ⊢ ( GCH = V → 𝒫 ( 𝑥 ∪ ω ) ∈ dom card ) |
| 13 | 3 | canth2 | ⊢ ( 𝑥 ∪ ω ) ≺ 𝒫 ( 𝑥 ∪ ω ) |
| 14 | sdomdom | ⊢ ( ( 𝑥 ∪ ω ) ≺ 𝒫 ( 𝑥 ∪ ω ) → ( 𝑥 ∪ ω ) ≼ 𝒫 ( 𝑥 ∪ ω ) ) | |
| 15 | 13 14 | ax-mp | ⊢ ( 𝑥 ∪ ω ) ≼ 𝒫 ( 𝑥 ∪ ω ) |
| 16 | numdom | ⊢ ( ( 𝒫 ( 𝑥 ∪ ω ) ∈ dom card ∧ ( 𝑥 ∪ ω ) ≼ 𝒫 ( 𝑥 ∪ ω ) ) → ( 𝑥 ∪ ω ) ∈ dom card ) | |
| 17 | 12 15 16 | sylancl | ⊢ ( GCH = V → ( 𝑥 ∪ ω ) ∈ dom card ) |
| 18 | ssun1 | ⊢ 𝑥 ⊆ ( 𝑥 ∪ ω ) | |
| 19 | ssnum | ⊢ ( ( ( 𝑥 ∪ ω ) ∈ dom card ∧ 𝑥 ⊆ ( 𝑥 ∪ ω ) ) → 𝑥 ∈ dom card ) | |
| 20 | 17 18 19 | sylancl | ⊢ ( GCH = V → 𝑥 ∈ dom card ) |
| 21 | 1 | a1i | ⊢ ( GCH = V → 𝑥 ∈ V ) |
| 22 | 20 21 | 2thd | ⊢ ( GCH = V → ( 𝑥 ∈ dom card ↔ 𝑥 ∈ V ) ) |
| 23 | 22 | eqrdv | ⊢ ( GCH = V → dom card = V ) |
| 24 | dfac10 | ⊢ ( CHOICE ↔ dom card = V ) | |
| 25 | 23 24 | sylibr | ⊢ ( GCH = V → CHOICE ) |