This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transitivity of dominance relation. Theorem 17 of Suppes p. 94. (Contributed by NM, 4-Jun-1998) (Revised by Mario Carneiro, 15-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | domtr | ⊢ ( ( 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶 ) → 𝐴 ≼ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reldom | ⊢ Rel ≼ | |
| 2 | vex | ⊢ 𝑦 ∈ V | |
| 3 | 2 | brdom | ⊢ ( 𝑥 ≼ 𝑦 ↔ ∃ 𝑔 𝑔 : 𝑥 –1-1→ 𝑦 ) |
| 4 | vex | ⊢ 𝑧 ∈ V | |
| 5 | 4 | brdom | ⊢ ( 𝑦 ≼ 𝑧 ↔ ∃ 𝑓 𝑓 : 𝑦 –1-1→ 𝑧 ) |
| 6 | exdistrv | ⊢ ( ∃ 𝑔 ∃ 𝑓 ( 𝑔 : 𝑥 –1-1→ 𝑦 ∧ 𝑓 : 𝑦 –1-1→ 𝑧 ) ↔ ( ∃ 𝑔 𝑔 : 𝑥 –1-1→ 𝑦 ∧ ∃ 𝑓 𝑓 : 𝑦 –1-1→ 𝑧 ) ) | |
| 7 | f1co | ⊢ ( ( 𝑓 : 𝑦 –1-1→ 𝑧 ∧ 𝑔 : 𝑥 –1-1→ 𝑦 ) → ( 𝑓 ∘ 𝑔 ) : 𝑥 –1-1→ 𝑧 ) | |
| 8 | 7 | ancoms | ⊢ ( ( 𝑔 : 𝑥 –1-1→ 𝑦 ∧ 𝑓 : 𝑦 –1-1→ 𝑧 ) → ( 𝑓 ∘ 𝑔 ) : 𝑥 –1-1→ 𝑧 ) |
| 9 | vex | ⊢ 𝑓 ∈ V | |
| 10 | vex | ⊢ 𝑔 ∈ V | |
| 11 | 9 10 | coex | ⊢ ( 𝑓 ∘ 𝑔 ) ∈ V |
| 12 | f1eq1 | ⊢ ( ℎ = ( 𝑓 ∘ 𝑔 ) → ( ℎ : 𝑥 –1-1→ 𝑧 ↔ ( 𝑓 ∘ 𝑔 ) : 𝑥 –1-1→ 𝑧 ) ) | |
| 13 | 11 12 | spcev | ⊢ ( ( 𝑓 ∘ 𝑔 ) : 𝑥 –1-1→ 𝑧 → ∃ ℎ ℎ : 𝑥 –1-1→ 𝑧 ) |
| 14 | 8 13 | syl | ⊢ ( ( 𝑔 : 𝑥 –1-1→ 𝑦 ∧ 𝑓 : 𝑦 –1-1→ 𝑧 ) → ∃ ℎ ℎ : 𝑥 –1-1→ 𝑧 ) |
| 15 | 4 | brdom | ⊢ ( 𝑥 ≼ 𝑧 ↔ ∃ ℎ ℎ : 𝑥 –1-1→ 𝑧 ) |
| 16 | 14 15 | sylibr | ⊢ ( ( 𝑔 : 𝑥 –1-1→ 𝑦 ∧ 𝑓 : 𝑦 –1-1→ 𝑧 ) → 𝑥 ≼ 𝑧 ) |
| 17 | 16 | exlimivv | ⊢ ( ∃ 𝑔 ∃ 𝑓 ( 𝑔 : 𝑥 –1-1→ 𝑦 ∧ 𝑓 : 𝑦 –1-1→ 𝑧 ) → 𝑥 ≼ 𝑧 ) |
| 18 | 6 17 | sylbir | ⊢ ( ( ∃ 𝑔 𝑔 : 𝑥 –1-1→ 𝑦 ∧ ∃ 𝑓 𝑓 : 𝑦 –1-1→ 𝑧 ) → 𝑥 ≼ 𝑧 ) |
| 19 | 3 5 18 | syl2anb | ⊢ ( ( 𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑧 ) → 𝑥 ≼ 𝑧 ) |
| 20 | 1 19 | vtoclr | ⊢ ( ( 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶 ) → 𝐴 ≼ 𝐶 ) |