This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering law for cardinal addition. Theorem 6L(a) of Enderton p. 149. (Contributed by NM, 28-Sep-2004) (Revised by Mario Carneiro, 29-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | djudom2 | ⊢ ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ 𝑉 ) → ( 𝐶 ⊔ 𝐴 ) ≼ ( 𝐶 ⊔ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | djudom1 | ⊢ ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ 𝑉 ) → ( 𝐴 ⊔ 𝐶 ) ≼ ( 𝐵 ⊔ 𝐶 ) ) | |
| 2 | reldom | ⊢ Rel ≼ | |
| 3 | 2 | brrelex1i | ⊢ ( 𝐴 ≼ 𝐵 → 𝐴 ∈ V ) |
| 4 | djucomen | ⊢ ( ( 𝐴 ∈ V ∧ 𝐶 ∈ 𝑉 ) → ( 𝐴 ⊔ 𝐶 ) ≈ ( 𝐶 ⊔ 𝐴 ) ) | |
| 5 | 3 4 | sylan | ⊢ ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ 𝑉 ) → ( 𝐴 ⊔ 𝐶 ) ≈ ( 𝐶 ⊔ 𝐴 ) ) |
| 6 | 2 | brrelex2i | ⊢ ( 𝐴 ≼ 𝐵 → 𝐵 ∈ V ) |
| 7 | djucomen | ⊢ ( ( 𝐵 ∈ V ∧ 𝐶 ∈ 𝑉 ) → ( 𝐵 ⊔ 𝐶 ) ≈ ( 𝐶 ⊔ 𝐵 ) ) | |
| 8 | 6 7 | sylan | ⊢ ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ 𝑉 ) → ( 𝐵 ⊔ 𝐶 ) ≈ ( 𝐶 ⊔ 𝐵 ) ) |
| 9 | domen1 | ⊢ ( ( 𝐴 ⊔ 𝐶 ) ≈ ( 𝐶 ⊔ 𝐴 ) → ( ( 𝐴 ⊔ 𝐶 ) ≼ ( 𝐵 ⊔ 𝐶 ) ↔ ( 𝐶 ⊔ 𝐴 ) ≼ ( 𝐵 ⊔ 𝐶 ) ) ) | |
| 10 | domen2 | ⊢ ( ( 𝐵 ⊔ 𝐶 ) ≈ ( 𝐶 ⊔ 𝐵 ) → ( ( 𝐶 ⊔ 𝐴 ) ≼ ( 𝐵 ⊔ 𝐶 ) ↔ ( 𝐶 ⊔ 𝐴 ) ≼ ( 𝐶 ⊔ 𝐵 ) ) ) | |
| 11 | 9 10 | sylan9bb | ⊢ ( ( ( 𝐴 ⊔ 𝐶 ) ≈ ( 𝐶 ⊔ 𝐴 ) ∧ ( 𝐵 ⊔ 𝐶 ) ≈ ( 𝐶 ⊔ 𝐵 ) ) → ( ( 𝐴 ⊔ 𝐶 ) ≼ ( 𝐵 ⊔ 𝐶 ) ↔ ( 𝐶 ⊔ 𝐴 ) ≼ ( 𝐶 ⊔ 𝐵 ) ) ) |
| 12 | 5 8 11 | syl2anc | ⊢ ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ 𝑉 ) → ( ( 𝐴 ⊔ 𝐶 ) ≼ ( 𝐵 ⊔ 𝐶 ) ↔ ( 𝐶 ⊔ 𝐴 ) ≼ ( 𝐶 ⊔ 𝐵 ) ) ) |
| 13 | 1 12 | mpbid | ⊢ ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ 𝑉 ) → ( 𝐶 ⊔ 𝐴 ) ≼ ( 𝐶 ⊔ 𝐵 ) ) |