This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A "local" form of gchac . If A and ~P A are GCH-sets, then the Hartogs number of A is ~P A (so ~P A and a fortiori A are well-orderable). The proof is due to Specker. Theorem 2.1 of KanamoriPincus p. 419. (Contributed by Mario Carneiro, 31-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gchhar | |- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ( har ` A ) ~~ ~P A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | harcl | |- ( har ` A ) e. On |
|
| 2 | simp3 | |- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ~P A e. GCH ) |
|
| 3 | djudoml | |- ( ( ( har ` A ) e. On /\ ~P A e. GCH ) -> ( har ` A ) ~<_ ( ( har ` A ) |_| ~P A ) ) |
|
| 4 | 1 2 3 | sylancr | |- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ( har ` A ) ~<_ ( ( har ` A ) |_| ~P A ) ) |
| 5 | domnsym | |- ( _om ~<_ A -> -. A ~< _om ) |
|
| 6 | 5 | 3ad2ant1 | |- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> -. A ~< _om ) |
| 7 | isfinite | |- ( A e. Fin <-> A ~< _om ) |
|
| 8 | 6 7 | sylnibr | |- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> -. A e. Fin ) |
| 9 | pwfi | |- ( A e. Fin <-> ~P A e. Fin ) |
|
| 10 | 8 9 | sylnib | |- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> -. ~P A e. Fin ) |
| 11 | djudoml | |- ( ( ~P A e. GCH /\ ( har ` A ) e. On ) -> ~P A ~<_ ( ~P A |_| ( har ` A ) ) ) |
|
| 12 | 2 1 11 | sylancl | |- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ~P A ~<_ ( ~P A |_| ( har ` A ) ) ) |
| 13 | fvexd | |- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ( har ` A ) e. _V ) |
|
| 14 | djuex | |- ( ( ~P A e. GCH /\ ( har ` A ) e. _V ) -> ( ~P A |_| ( har ` A ) ) e. _V ) |
|
| 15 | 2 13 14 | syl2anc | |- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ( ~P A |_| ( har ` A ) ) e. _V ) |
| 16 | canth2g | |- ( ( ~P A |_| ( har ` A ) ) e. _V -> ( ~P A |_| ( har ` A ) ) ~< ~P ( ~P A |_| ( har ` A ) ) ) |
|
| 17 | 15 16 | syl | |- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ( ~P A |_| ( har ` A ) ) ~< ~P ( ~P A |_| ( har ` A ) ) ) |
| 18 | pwdjuen | |- ( ( ~P A e. GCH /\ ( har ` A ) e. On ) -> ~P ( ~P A |_| ( har ` A ) ) ~~ ( ~P ~P A X. ~P ( har ` A ) ) ) |
|
| 19 | 2 1 18 | sylancl | |- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ~P ( ~P A |_| ( har ` A ) ) ~~ ( ~P ~P A X. ~P ( har ` A ) ) ) |
| 20 | 2 | pwexd | |- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ~P ~P A e. _V ) |
| 21 | simp2 | |- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> A e. GCH ) |
|
| 22 | harwdom | |- ( A e. GCH -> ( har ` A ) ~<_* ~P ( A X. A ) ) |
|
| 23 | wdompwdom | |- ( ( har ` A ) ~<_* ~P ( A X. A ) -> ~P ( har ` A ) ~<_ ~P ~P ( A X. A ) ) |
|
| 24 | 21 22 23 | 3syl | |- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ~P ( har ` A ) ~<_ ~P ~P ( A X. A ) ) |
| 25 | xpdom2g | |- ( ( ~P ~P A e. _V /\ ~P ( har ` A ) ~<_ ~P ~P ( A X. A ) ) -> ( ~P ~P A X. ~P ( har ` A ) ) ~<_ ( ~P ~P A X. ~P ~P ( A X. A ) ) ) |
|
| 26 | 20 24 25 | syl2anc | |- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ( ~P ~P A X. ~P ( har ` A ) ) ~<_ ( ~P ~P A X. ~P ~P ( A X. A ) ) ) |
| 27 | 21 21 | xpexd | |- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ( A X. A ) e. _V ) |
| 28 | 27 | pwexd | |- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ~P ( A X. A ) e. _V ) |
| 29 | pwdjuen | |- ( ( ~P A e. GCH /\ ~P ( A X. A ) e. _V ) -> ~P ( ~P A |_| ~P ( A X. A ) ) ~~ ( ~P ~P A X. ~P ~P ( A X. A ) ) ) |
|
| 30 | 2 28 29 | syl2anc | |- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ~P ( ~P A |_| ~P ( A X. A ) ) ~~ ( ~P ~P A X. ~P ~P ( A X. A ) ) ) |
| 31 | 30 | ensymd | |- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ( ~P ~P A X. ~P ~P ( A X. A ) ) ~~ ~P ( ~P A |_| ~P ( A X. A ) ) ) |
| 32 | enrefg | |- ( ~P A e. GCH -> ~P A ~~ ~P A ) |
|
| 33 | 2 32 | syl | |- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ~P A ~~ ~P A ) |
| 34 | gchxpidm | |- ( ( A e. GCH /\ -. A e. Fin ) -> ( A X. A ) ~~ A ) |
|
| 35 | 21 8 34 | syl2anc | |- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ( A X. A ) ~~ A ) |
| 36 | pwen | |- ( ( A X. A ) ~~ A -> ~P ( A X. A ) ~~ ~P A ) |
|
| 37 | 35 36 | syl | |- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ~P ( A X. A ) ~~ ~P A ) |
| 38 | djuen | |- ( ( ~P A ~~ ~P A /\ ~P ( A X. A ) ~~ ~P A ) -> ( ~P A |_| ~P ( A X. A ) ) ~~ ( ~P A |_| ~P A ) ) |
|
| 39 | 33 37 38 | syl2anc | |- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ( ~P A |_| ~P ( A X. A ) ) ~~ ( ~P A |_| ~P A ) ) |
| 40 | gchdjuidm | |- ( ( ~P A e. GCH /\ -. ~P A e. Fin ) -> ( ~P A |_| ~P A ) ~~ ~P A ) |
|
| 41 | 2 10 40 | syl2anc | |- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ( ~P A |_| ~P A ) ~~ ~P A ) |
| 42 | entr | |- ( ( ( ~P A |_| ~P ( A X. A ) ) ~~ ( ~P A |_| ~P A ) /\ ( ~P A |_| ~P A ) ~~ ~P A ) -> ( ~P A |_| ~P ( A X. A ) ) ~~ ~P A ) |
|
| 43 | 39 41 42 | syl2anc | |- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ( ~P A |_| ~P ( A X. A ) ) ~~ ~P A ) |
| 44 | pwen | |- ( ( ~P A |_| ~P ( A X. A ) ) ~~ ~P A -> ~P ( ~P A |_| ~P ( A X. A ) ) ~~ ~P ~P A ) |
|
| 45 | 43 44 | syl | |- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ~P ( ~P A |_| ~P ( A X. A ) ) ~~ ~P ~P A ) |
| 46 | entr | |- ( ( ( ~P ~P A X. ~P ~P ( A X. A ) ) ~~ ~P ( ~P A |_| ~P ( A X. A ) ) /\ ~P ( ~P A |_| ~P ( A X. A ) ) ~~ ~P ~P A ) -> ( ~P ~P A X. ~P ~P ( A X. A ) ) ~~ ~P ~P A ) |
|
| 47 | 31 45 46 | syl2anc | |- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ( ~P ~P A X. ~P ~P ( A X. A ) ) ~~ ~P ~P A ) |
| 48 | domentr | |- ( ( ( ~P ~P A X. ~P ( har ` A ) ) ~<_ ( ~P ~P A X. ~P ~P ( A X. A ) ) /\ ( ~P ~P A X. ~P ~P ( A X. A ) ) ~~ ~P ~P A ) -> ( ~P ~P A X. ~P ( har ` A ) ) ~<_ ~P ~P A ) |
|
| 49 | 26 47 48 | syl2anc | |- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ( ~P ~P A X. ~P ( har ` A ) ) ~<_ ~P ~P A ) |
| 50 | endomtr | |- ( ( ~P ( ~P A |_| ( har ` A ) ) ~~ ( ~P ~P A X. ~P ( har ` A ) ) /\ ( ~P ~P A X. ~P ( har ` A ) ) ~<_ ~P ~P A ) -> ~P ( ~P A |_| ( har ` A ) ) ~<_ ~P ~P A ) |
|
| 51 | 19 49 50 | syl2anc | |- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ~P ( ~P A |_| ( har ` A ) ) ~<_ ~P ~P A ) |
| 52 | sdomdomtr | |- ( ( ( ~P A |_| ( har ` A ) ) ~< ~P ( ~P A |_| ( har ` A ) ) /\ ~P ( ~P A |_| ( har ` A ) ) ~<_ ~P ~P A ) -> ( ~P A |_| ( har ` A ) ) ~< ~P ~P A ) |
|
| 53 | 17 51 52 | syl2anc | |- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ( ~P A |_| ( har ` A ) ) ~< ~P ~P A ) |
| 54 | gchen1 | |- ( ( ( ~P A e. GCH /\ -. ~P A e. Fin ) /\ ( ~P A ~<_ ( ~P A |_| ( har ` A ) ) /\ ( ~P A |_| ( har ` A ) ) ~< ~P ~P A ) ) -> ~P A ~~ ( ~P A |_| ( har ` A ) ) ) |
|
| 55 | 2 10 12 53 54 | syl22anc | |- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ~P A ~~ ( ~P A |_| ( har ` A ) ) ) |
| 56 | djucomen | |- ( ( ~P A e. GCH /\ ( har ` A ) e. _V ) -> ( ~P A |_| ( har ` A ) ) ~~ ( ( har ` A ) |_| ~P A ) ) |
|
| 57 | 2 13 56 | syl2anc | |- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ( ~P A |_| ( har ` A ) ) ~~ ( ( har ` A ) |_| ~P A ) ) |
| 58 | entr | |- ( ( ~P A ~~ ( ~P A |_| ( har ` A ) ) /\ ( ~P A |_| ( har ` A ) ) ~~ ( ( har ` A ) |_| ~P A ) ) -> ~P A ~~ ( ( har ` A ) |_| ~P A ) ) |
|
| 59 | 55 57 58 | syl2anc | |- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ~P A ~~ ( ( har ` A ) |_| ~P A ) ) |
| 60 | 59 | ensymd | |- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ( ( har ` A ) |_| ~P A ) ~~ ~P A ) |
| 61 | domentr | |- ( ( ( har ` A ) ~<_ ( ( har ` A ) |_| ~P A ) /\ ( ( har ` A ) |_| ~P A ) ~~ ~P A ) -> ( har ` A ) ~<_ ~P A ) |
|
| 62 | 4 60 61 | syl2anc | |- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ( har ` A ) ~<_ ~P A ) |
| 63 | gchdjuidm | |- ( ( A e. GCH /\ -. A e. Fin ) -> ( A |_| A ) ~~ A ) |
|
| 64 | 21 8 63 | syl2anc | |- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ( A |_| A ) ~~ A ) |
| 65 | pwen | |- ( ( A |_| A ) ~~ A -> ~P ( A |_| A ) ~~ ~P A ) |
|
| 66 | 64 65 | syl | |- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ~P ( A |_| A ) ~~ ~P A ) |
| 67 | djudoml | |- ( ( A e. GCH /\ ( har ` A ) e. On ) -> A ~<_ ( A |_| ( har ` A ) ) ) |
|
| 68 | 21 1 67 | sylancl | |- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> A ~<_ ( A |_| ( har ` A ) ) ) |
| 69 | harndom | |- -. ( har ` A ) ~<_ A |
|
| 70 | djudoml | |- ( ( ( har ` A ) e. On /\ A e. GCH ) -> ( har ` A ) ~<_ ( ( har ` A ) |_| A ) ) |
|
| 71 | 1 21 70 | sylancr | |- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ( har ` A ) ~<_ ( ( har ` A ) |_| A ) ) |
| 72 | djucomen | |- ( ( ( har ` A ) e. On /\ A e. GCH ) -> ( ( har ` A ) |_| A ) ~~ ( A |_| ( har ` A ) ) ) |
|
| 73 | 1 21 72 | sylancr | |- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ( ( har ` A ) |_| A ) ~~ ( A |_| ( har ` A ) ) ) |
| 74 | domentr | |- ( ( ( har ` A ) ~<_ ( ( har ` A ) |_| A ) /\ ( ( har ` A ) |_| A ) ~~ ( A |_| ( har ` A ) ) ) -> ( har ` A ) ~<_ ( A |_| ( har ` A ) ) ) |
|
| 75 | 71 73 74 | syl2anc | |- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ( har ` A ) ~<_ ( A |_| ( har ` A ) ) ) |
| 76 | domen2 | |- ( A ~~ ( A |_| ( har ` A ) ) -> ( ( har ` A ) ~<_ A <-> ( har ` A ) ~<_ ( A |_| ( har ` A ) ) ) ) |
|
| 77 | 75 76 | syl5ibrcom | |- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ( A ~~ ( A |_| ( har ` A ) ) -> ( har ` A ) ~<_ A ) ) |
| 78 | 69 77 | mtoi | |- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> -. A ~~ ( A |_| ( har ` A ) ) ) |
| 79 | brsdom | |- ( A ~< ( A |_| ( har ` A ) ) <-> ( A ~<_ ( A |_| ( har ` A ) ) /\ -. A ~~ ( A |_| ( har ` A ) ) ) ) |
|
| 80 | 68 78 79 | sylanbrc | |- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> A ~< ( A |_| ( har ` A ) ) ) |
| 81 | canth2g | |- ( A e. GCH -> A ~< ~P A ) |
|
| 82 | sdomdom | |- ( A ~< ~P A -> A ~<_ ~P A ) |
|
| 83 | 21 81 82 | 3syl | |- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> A ~<_ ~P A ) |
| 84 | djudom1 | |- ( ( A ~<_ ~P A /\ ( har ` A ) e. On ) -> ( A |_| ( har ` A ) ) ~<_ ( ~P A |_| ( har ` A ) ) ) |
|
| 85 | 83 1 84 | sylancl | |- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ( A |_| ( har ` A ) ) ~<_ ( ~P A |_| ( har ` A ) ) ) |
| 86 | djudom2 | |- ( ( ( har ` A ) ~<_ ~P A /\ ~P A e. GCH ) -> ( ~P A |_| ( har ` A ) ) ~<_ ( ~P A |_| ~P A ) ) |
|
| 87 | 62 2 86 | syl2anc | |- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ( ~P A |_| ( har ` A ) ) ~<_ ( ~P A |_| ~P A ) ) |
| 88 | domtr | |- ( ( ( A |_| ( har ` A ) ) ~<_ ( ~P A |_| ( har ` A ) ) /\ ( ~P A |_| ( har ` A ) ) ~<_ ( ~P A |_| ~P A ) ) -> ( A |_| ( har ` A ) ) ~<_ ( ~P A |_| ~P A ) ) |
|
| 89 | 85 87 88 | syl2anc | |- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ( A |_| ( har ` A ) ) ~<_ ( ~P A |_| ~P A ) ) |
| 90 | domentr | |- ( ( ( A |_| ( har ` A ) ) ~<_ ( ~P A |_| ~P A ) /\ ( ~P A |_| ~P A ) ~~ ~P A ) -> ( A |_| ( har ` A ) ) ~<_ ~P A ) |
|
| 91 | 89 41 90 | syl2anc | |- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ( A |_| ( har ` A ) ) ~<_ ~P A ) |
| 92 | gchen2 | |- ( ( ( A e. GCH /\ -. A e. Fin ) /\ ( A ~< ( A |_| ( har ` A ) ) /\ ( A |_| ( har ` A ) ) ~<_ ~P A ) ) -> ( A |_| ( har ` A ) ) ~~ ~P A ) |
|
| 93 | 21 8 80 91 92 | syl22anc | |- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ( A |_| ( har ` A ) ) ~~ ~P A ) |
| 94 | 93 | ensymd | |- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ~P A ~~ ( A |_| ( har ` A ) ) ) |
| 95 | entr | |- ( ( ~P ( A |_| A ) ~~ ~P A /\ ~P A ~~ ( A |_| ( har ` A ) ) ) -> ~P ( A |_| A ) ~~ ( A |_| ( har ` A ) ) ) |
|
| 96 | 66 94 95 | syl2anc | |- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ~P ( A |_| A ) ~~ ( A |_| ( har ` A ) ) ) |
| 97 | endom | |- ( ~P ( A |_| A ) ~~ ( A |_| ( har ` A ) ) -> ~P ( A |_| A ) ~<_ ( A |_| ( har ` A ) ) ) |
|
| 98 | pwdjudom | |- ( ~P ( A |_| A ) ~<_ ( A |_| ( har ` A ) ) -> ~P A ~<_ ( har ` A ) ) |
|
| 99 | 96 97 98 | 3syl | |- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ~P A ~<_ ( har ` A ) ) |
| 100 | sbth | |- ( ( ( har ` A ) ~<_ ~P A /\ ~P A ~<_ ( har ` A ) ) -> ( har ` A ) ~~ ~P A ) |
|
| 101 | 62 99 100 | syl2anc | |- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ( har ` A ) ~~ ~P A ) |