This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The power set of a finite set is finite and vice-versa. Theorem 38 of Suppes p. 104 and its converse, Theorem 40 of Suppes p. 105. (Contributed by NM, 26-Mar-2007) Avoid ax-pow . (Revised by BTernaryTau, 7-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pwfi | ⊢ ( 𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pweq | ⊢ ( 𝑥 = ∅ → 𝒫 𝑥 = 𝒫 ∅ ) | |
| 2 | 1 | eleq1d | ⊢ ( 𝑥 = ∅ → ( 𝒫 𝑥 ∈ Fin ↔ 𝒫 ∅ ∈ Fin ) ) |
| 3 | pweq | ⊢ ( 𝑥 = 𝑦 → 𝒫 𝑥 = 𝒫 𝑦 ) | |
| 4 | 3 | eleq1d | ⊢ ( 𝑥 = 𝑦 → ( 𝒫 𝑥 ∈ Fin ↔ 𝒫 𝑦 ∈ Fin ) ) |
| 5 | pweq | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → 𝒫 𝑥 = 𝒫 ( 𝑦 ∪ { 𝑧 } ) ) | |
| 6 | 5 | eleq1d | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝒫 𝑥 ∈ Fin ↔ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ) ) |
| 7 | pweq | ⊢ ( 𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴 ) | |
| 8 | 7 | eleq1d | ⊢ ( 𝑥 = 𝐴 → ( 𝒫 𝑥 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin ) ) |
| 9 | pw0 | ⊢ 𝒫 ∅ = { ∅ } | |
| 10 | snfi | ⊢ { ∅ } ∈ Fin | |
| 11 | 9 10 | eqeltri | ⊢ 𝒫 ∅ ∈ Fin |
| 12 | eqid | ⊢ ( 𝑐 ∈ 𝒫 𝑦 ↦ ( 𝑐 ∪ { 𝑧 } ) ) = ( 𝑐 ∈ 𝒫 𝑦 ↦ ( 𝑐 ∪ { 𝑧 } ) ) | |
| 13 | 12 | pwfilem | ⊢ ( 𝒫 𝑦 ∈ Fin → 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ) |
| 14 | 13 | a1i | ⊢ ( 𝑦 ∈ Fin → ( 𝒫 𝑦 ∈ Fin → 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ) ) |
| 15 | 2 4 6 8 11 14 | findcard2 | ⊢ ( 𝐴 ∈ Fin → 𝒫 𝐴 ∈ Fin ) |
| 16 | pwfir | ⊢ ( 𝒫 𝐴 ∈ Fin → 𝐴 ∈ Fin ) | |
| 17 | 15 16 | impbii | ⊢ ( 𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin ) |