This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An infinite GCH-set is idempotent under cardinal sum. Part of Lemma 2.2 of KanamoriPincus p. 419. (Contributed by Mario Carneiro, 31-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gchdjuidm | ⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → 𝐴 ∈ GCH ) | |
| 2 | djudoml | ⊢ ( ( 𝐴 ∈ GCH ∧ 𝐴 ∈ GCH ) → 𝐴 ≼ ( 𝐴 ⊔ 𝐴 ) ) | |
| 3 | 1 1 2 | syl2anc | ⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → 𝐴 ≼ ( 𝐴 ⊔ 𝐴 ) ) |
| 4 | canth2g | ⊢ ( 𝐴 ∈ GCH → 𝐴 ≺ 𝒫 𝐴 ) | |
| 5 | 4 | adantr | ⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → 𝐴 ≺ 𝒫 𝐴 ) |
| 6 | sdomdom | ⊢ ( 𝐴 ≺ 𝒫 𝐴 → 𝐴 ≼ 𝒫 𝐴 ) | |
| 7 | 5 6 | syl | ⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → 𝐴 ≼ 𝒫 𝐴 ) |
| 8 | reldom | ⊢ Rel ≼ | |
| 9 | 8 | brrelex1i | ⊢ ( 𝐴 ≼ 𝒫 𝐴 → 𝐴 ∈ V ) |
| 10 | djudom1 | ⊢ ( ( 𝐴 ≼ 𝒫 𝐴 ∧ 𝐴 ∈ V ) → ( 𝐴 ⊔ 𝐴 ) ≼ ( 𝒫 𝐴 ⊔ 𝐴 ) ) | |
| 11 | 9 10 | mpdan | ⊢ ( 𝐴 ≼ 𝒫 𝐴 → ( 𝐴 ⊔ 𝐴 ) ≼ ( 𝒫 𝐴 ⊔ 𝐴 ) ) |
| 12 | 9 | pwexd | ⊢ ( 𝐴 ≼ 𝒫 𝐴 → 𝒫 𝐴 ∈ V ) |
| 13 | djudom2 | ⊢ ( ( 𝐴 ≼ 𝒫 𝐴 ∧ 𝒫 𝐴 ∈ V ) → ( 𝒫 𝐴 ⊔ 𝐴 ) ≼ ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ) | |
| 14 | 12 13 | mpdan | ⊢ ( 𝐴 ≼ 𝒫 𝐴 → ( 𝒫 𝐴 ⊔ 𝐴 ) ≼ ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ) |
| 15 | domtr | ⊢ ( ( ( 𝐴 ⊔ 𝐴 ) ≼ ( 𝒫 𝐴 ⊔ 𝐴 ) ∧ ( 𝒫 𝐴 ⊔ 𝐴 ) ≼ ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ) → ( 𝐴 ⊔ 𝐴 ) ≼ ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ) | |
| 16 | 11 14 15 | syl2anc | ⊢ ( 𝐴 ≼ 𝒫 𝐴 → ( 𝐴 ⊔ 𝐴 ) ≼ ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ) |
| 17 | 7 16 | syl | ⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → ( 𝐴 ⊔ 𝐴 ) ≼ ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ) |
| 18 | pwdju1 | ⊢ ( 𝐴 ∈ GCH → ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ≈ 𝒫 ( 𝐴 ⊔ 1o ) ) | |
| 19 | 18 | adantr | ⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ≈ 𝒫 ( 𝐴 ⊔ 1o ) ) |
| 20 | gchdju1 | ⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → ( 𝐴 ⊔ 1o ) ≈ 𝐴 ) | |
| 21 | pwen | ⊢ ( ( 𝐴 ⊔ 1o ) ≈ 𝐴 → 𝒫 ( 𝐴 ⊔ 1o ) ≈ 𝒫 𝐴 ) | |
| 22 | 20 21 | syl | ⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → 𝒫 ( 𝐴 ⊔ 1o ) ≈ 𝒫 𝐴 ) |
| 23 | entr | ⊢ ( ( ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ≈ 𝒫 ( 𝐴 ⊔ 1o ) ∧ 𝒫 ( 𝐴 ⊔ 1o ) ≈ 𝒫 𝐴 ) → ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ≈ 𝒫 𝐴 ) | |
| 24 | 19 22 23 | syl2anc | ⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ≈ 𝒫 𝐴 ) |
| 25 | domentr | ⊢ ( ( ( 𝐴 ⊔ 𝐴 ) ≼ ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ∧ ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ≈ 𝒫 𝐴 ) → ( 𝐴 ⊔ 𝐴 ) ≼ 𝒫 𝐴 ) | |
| 26 | 17 24 25 | syl2anc | ⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → ( 𝐴 ⊔ 𝐴 ) ≼ 𝒫 𝐴 ) |
| 27 | gchinf | ⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → ω ≼ 𝐴 ) | |
| 28 | pwdjundom | ⊢ ( ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ ( 𝐴 ⊔ 𝐴 ) ) | |
| 29 | 27 28 | syl | ⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → ¬ 𝒫 𝐴 ≼ ( 𝐴 ⊔ 𝐴 ) ) |
| 30 | ensym | ⊢ ( ( 𝐴 ⊔ 𝐴 ) ≈ 𝒫 𝐴 → 𝒫 𝐴 ≈ ( 𝐴 ⊔ 𝐴 ) ) | |
| 31 | endom | ⊢ ( 𝒫 𝐴 ≈ ( 𝐴 ⊔ 𝐴 ) → 𝒫 𝐴 ≼ ( 𝐴 ⊔ 𝐴 ) ) | |
| 32 | 30 31 | syl | ⊢ ( ( 𝐴 ⊔ 𝐴 ) ≈ 𝒫 𝐴 → 𝒫 𝐴 ≼ ( 𝐴 ⊔ 𝐴 ) ) |
| 33 | 29 32 | nsyl | ⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → ¬ ( 𝐴 ⊔ 𝐴 ) ≈ 𝒫 𝐴 ) |
| 34 | brsdom | ⊢ ( ( 𝐴 ⊔ 𝐴 ) ≺ 𝒫 𝐴 ↔ ( ( 𝐴 ⊔ 𝐴 ) ≼ 𝒫 𝐴 ∧ ¬ ( 𝐴 ⊔ 𝐴 ) ≈ 𝒫 𝐴 ) ) | |
| 35 | 26 33 34 | sylanbrc | ⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → ( 𝐴 ⊔ 𝐴 ) ≺ 𝒫 𝐴 ) |
| 36 | 3 35 | jca | ⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → ( 𝐴 ≼ ( 𝐴 ⊔ 𝐴 ) ∧ ( 𝐴 ⊔ 𝐴 ) ≺ 𝒫 𝐴 ) ) |
| 37 | gchen1 | ⊢ ( ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) ∧ ( 𝐴 ≼ ( 𝐴 ⊔ 𝐴 ) ∧ ( 𝐴 ⊔ 𝐴 ) ≺ 𝒫 𝐴 ) ) → 𝐴 ≈ ( 𝐴 ⊔ 𝐴 ) ) | |
| 38 | 36 37 | mpdan | ⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → 𝐴 ≈ ( 𝐴 ⊔ 𝐴 ) ) |
| 39 | 38 | ensymd | ⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → ( 𝐴 ⊔ 𝐴 ) ≈ 𝐴 ) |