This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Disjoint unions of equinumerous sets are equinumerous. (Contributed by NM, 28-Sep-2004) (Revised by Mario Carneiro, 29-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | djuen | ⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷 ) → ( 𝐴 ⊔ 𝐶 ) ≈ ( 𝐵 ⊔ 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex | ⊢ ∅ ∈ V | |
| 2 | relen | ⊢ Rel ≈ | |
| 3 | 2 | brrelex1i | ⊢ ( 𝐴 ≈ 𝐵 → 𝐴 ∈ V ) |
| 4 | xpsnen2g | ⊢ ( ( ∅ ∈ V ∧ 𝐴 ∈ V ) → ( { ∅ } × 𝐴 ) ≈ 𝐴 ) | |
| 5 | 1 3 4 | sylancr | ⊢ ( 𝐴 ≈ 𝐵 → ( { ∅ } × 𝐴 ) ≈ 𝐴 ) |
| 6 | 2 | brrelex2i | ⊢ ( 𝐴 ≈ 𝐵 → 𝐵 ∈ V ) |
| 7 | xpsnen2g | ⊢ ( ( ∅ ∈ V ∧ 𝐵 ∈ V ) → ( { ∅ } × 𝐵 ) ≈ 𝐵 ) | |
| 8 | 1 6 7 | sylancr | ⊢ ( 𝐴 ≈ 𝐵 → ( { ∅ } × 𝐵 ) ≈ 𝐵 ) |
| 9 | 8 | ensymd | ⊢ ( 𝐴 ≈ 𝐵 → 𝐵 ≈ ( { ∅ } × 𝐵 ) ) |
| 10 | entr | ⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐵 ≈ ( { ∅ } × 𝐵 ) ) → 𝐴 ≈ ( { ∅ } × 𝐵 ) ) | |
| 11 | 9 10 | mpdan | ⊢ ( 𝐴 ≈ 𝐵 → 𝐴 ≈ ( { ∅ } × 𝐵 ) ) |
| 12 | entr | ⊢ ( ( ( { ∅ } × 𝐴 ) ≈ 𝐴 ∧ 𝐴 ≈ ( { ∅ } × 𝐵 ) ) → ( { ∅ } × 𝐴 ) ≈ ( { ∅ } × 𝐵 ) ) | |
| 13 | 5 11 12 | syl2anc | ⊢ ( 𝐴 ≈ 𝐵 → ( { ∅ } × 𝐴 ) ≈ ( { ∅ } × 𝐵 ) ) |
| 14 | 1on | ⊢ 1o ∈ On | |
| 15 | 2 | brrelex1i | ⊢ ( 𝐶 ≈ 𝐷 → 𝐶 ∈ V ) |
| 16 | xpsnen2g | ⊢ ( ( 1o ∈ On ∧ 𝐶 ∈ V ) → ( { 1o } × 𝐶 ) ≈ 𝐶 ) | |
| 17 | 14 15 16 | sylancr | ⊢ ( 𝐶 ≈ 𝐷 → ( { 1o } × 𝐶 ) ≈ 𝐶 ) |
| 18 | 2 | brrelex2i | ⊢ ( 𝐶 ≈ 𝐷 → 𝐷 ∈ V ) |
| 19 | xpsnen2g | ⊢ ( ( 1o ∈ On ∧ 𝐷 ∈ V ) → ( { 1o } × 𝐷 ) ≈ 𝐷 ) | |
| 20 | 14 18 19 | sylancr | ⊢ ( 𝐶 ≈ 𝐷 → ( { 1o } × 𝐷 ) ≈ 𝐷 ) |
| 21 | 20 | ensymd | ⊢ ( 𝐶 ≈ 𝐷 → 𝐷 ≈ ( { 1o } × 𝐷 ) ) |
| 22 | entr | ⊢ ( ( 𝐶 ≈ 𝐷 ∧ 𝐷 ≈ ( { 1o } × 𝐷 ) ) → 𝐶 ≈ ( { 1o } × 𝐷 ) ) | |
| 23 | 21 22 | mpdan | ⊢ ( 𝐶 ≈ 𝐷 → 𝐶 ≈ ( { 1o } × 𝐷 ) ) |
| 24 | entr | ⊢ ( ( ( { 1o } × 𝐶 ) ≈ 𝐶 ∧ 𝐶 ≈ ( { 1o } × 𝐷 ) ) → ( { 1o } × 𝐶 ) ≈ ( { 1o } × 𝐷 ) ) | |
| 25 | 17 23 24 | syl2anc | ⊢ ( 𝐶 ≈ 𝐷 → ( { 1o } × 𝐶 ) ≈ ( { 1o } × 𝐷 ) ) |
| 26 | xp01disjl | ⊢ ( ( { ∅ } × 𝐴 ) ∩ ( { 1o } × 𝐶 ) ) = ∅ | |
| 27 | xp01disjl | ⊢ ( ( { ∅ } × 𝐵 ) ∩ ( { 1o } × 𝐷 ) ) = ∅ | |
| 28 | unen | ⊢ ( ( ( ( { ∅ } × 𝐴 ) ≈ ( { ∅ } × 𝐵 ) ∧ ( { 1o } × 𝐶 ) ≈ ( { 1o } × 𝐷 ) ) ∧ ( ( ( { ∅ } × 𝐴 ) ∩ ( { 1o } × 𝐶 ) ) = ∅ ∧ ( ( { ∅ } × 𝐵 ) ∩ ( { 1o } × 𝐷 ) ) = ∅ ) ) → ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐶 ) ) ≈ ( ( { ∅ } × 𝐵 ) ∪ ( { 1o } × 𝐷 ) ) ) | |
| 29 | 26 27 28 | mpanr12 | ⊢ ( ( ( { ∅ } × 𝐴 ) ≈ ( { ∅ } × 𝐵 ) ∧ ( { 1o } × 𝐶 ) ≈ ( { 1o } × 𝐷 ) ) → ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐶 ) ) ≈ ( ( { ∅ } × 𝐵 ) ∪ ( { 1o } × 𝐷 ) ) ) |
| 30 | 13 25 29 | syl2an | ⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷 ) → ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐶 ) ) ≈ ( ( { ∅ } × 𝐵 ) ∪ ( { 1o } × 𝐷 ) ) ) |
| 31 | df-dju | ⊢ ( 𝐴 ⊔ 𝐶 ) = ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐶 ) ) | |
| 32 | df-dju | ⊢ ( 𝐵 ⊔ 𝐷 ) = ( ( { ∅ } × 𝐵 ) ∪ ( { 1o } × 𝐷 ) ) | |
| 33 | 30 31 32 | 3brtr4g | ⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷 ) → ( 𝐴 ⊔ 𝐶 ) ≈ ( 𝐵 ⊔ 𝐷 ) ) |