This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Sum of exponents law for cardinal arithmetic. (Contributed by Mario Carneiro, 15-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pwdjuen | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → 𝒫 ( 𝐴 ⊔ 𝐵 ) ≈ ( 𝒫 𝐴 × 𝒫 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | djuex | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ⊔ 𝐵 ) ∈ V ) | |
| 2 | pw2eng | ⊢ ( ( 𝐴 ⊔ 𝐵 ) ∈ V → 𝒫 ( 𝐴 ⊔ 𝐵 ) ≈ ( 2o ↑m ( 𝐴 ⊔ 𝐵 ) ) ) | |
| 3 | 1 2 | syl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → 𝒫 ( 𝐴 ⊔ 𝐵 ) ≈ ( 2o ↑m ( 𝐴 ⊔ 𝐵 ) ) ) |
| 4 | 2on | ⊢ 2o ∈ On | |
| 5 | mapdjuen | ⊢ ( ( 2o ∈ On ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 2o ↑m ( 𝐴 ⊔ 𝐵 ) ) ≈ ( ( 2o ↑m 𝐴 ) × ( 2o ↑m 𝐵 ) ) ) | |
| 6 | 4 5 | mp3an1 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 2o ↑m ( 𝐴 ⊔ 𝐵 ) ) ≈ ( ( 2o ↑m 𝐴 ) × ( 2o ↑m 𝐵 ) ) ) |
| 7 | pw2eng | ⊢ ( 𝐴 ∈ 𝑉 → 𝒫 𝐴 ≈ ( 2o ↑m 𝐴 ) ) | |
| 8 | pw2eng | ⊢ ( 𝐵 ∈ 𝑊 → 𝒫 𝐵 ≈ ( 2o ↑m 𝐵 ) ) | |
| 9 | xpen | ⊢ ( ( 𝒫 𝐴 ≈ ( 2o ↑m 𝐴 ) ∧ 𝒫 𝐵 ≈ ( 2o ↑m 𝐵 ) ) → ( 𝒫 𝐴 × 𝒫 𝐵 ) ≈ ( ( 2o ↑m 𝐴 ) × ( 2o ↑m 𝐵 ) ) ) | |
| 10 | 7 8 9 | syl2an | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝒫 𝐴 × 𝒫 𝐵 ) ≈ ( ( 2o ↑m 𝐴 ) × ( 2o ↑m 𝐵 ) ) ) |
| 11 | enen2 | ⊢ ( ( 𝒫 𝐴 × 𝒫 𝐵 ) ≈ ( ( 2o ↑m 𝐴 ) × ( 2o ↑m 𝐵 ) ) → ( ( 2o ↑m ( 𝐴 ⊔ 𝐵 ) ) ≈ ( 𝒫 𝐴 × 𝒫 𝐵 ) ↔ ( 2o ↑m ( 𝐴 ⊔ 𝐵 ) ) ≈ ( ( 2o ↑m 𝐴 ) × ( 2o ↑m 𝐵 ) ) ) ) | |
| 12 | 10 11 | syl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( 2o ↑m ( 𝐴 ⊔ 𝐵 ) ) ≈ ( 𝒫 𝐴 × 𝒫 𝐵 ) ↔ ( 2o ↑m ( 𝐴 ⊔ 𝐵 ) ) ≈ ( ( 2o ↑m 𝐴 ) × ( 2o ↑m 𝐵 ) ) ) ) |
| 13 | 6 12 | mpbird | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 2o ↑m ( 𝐴 ⊔ 𝐵 ) ) ≈ ( 𝒫 𝐴 × 𝒫 𝐵 ) ) |
| 14 | entr | ⊢ ( ( 𝒫 ( 𝐴 ⊔ 𝐵 ) ≈ ( 2o ↑m ( 𝐴 ⊔ 𝐵 ) ) ∧ ( 2o ↑m ( 𝐴 ⊔ 𝐵 ) ) ≈ ( 𝒫 𝐴 × 𝒫 𝐵 ) ) → 𝒫 ( 𝐴 ⊔ 𝐵 ) ≈ ( 𝒫 𝐴 × 𝒫 𝐵 ) ) | |
| 15 | 3 13 14 | syl2anc | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → 𝒫 ( 𝐴 ⊔ 𝐵 ) ≈ ( 𝒫 𝐴 × 𝒫 𝐵 ) ) |