This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering law for cardinal addition. Exercise 4.56(f) of Mendelson p. 258. (Contributed by NM, 28-Sep-2004) (Revised by Mario Carneiro, 29-Apr-2015) (Revised by Jim Kingdon, 1-Sep-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | djudom1 | ⊢ ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ 𝑉 ) → ( 𝐴 ⊔ 𝐶 ) ≼ ( 𝐵 ⊔ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snex | ⊢ { ∅ } ∈ V | |
| 2 | 1 | xpdom2 | ⊢ ( 𝐴 ≼ 𝐵 → ( { ∅ } × 𝐴 ) ≼ ( { ∅ } × 𝐵 ) ) |
| 3 | snex | ⊢ { 1o } ∈ V | |
| 4 | xpexg | ⊢ ( ( { 1o } ∈ V ∧ 𝐶 ∈ 𝑉 ) → ( { 1o } × 𝐶 ) ∈ V ) | |
| 5 | 3 4 | mpan | ⊢ ( 𝐶 ∈ 𝑉 → ( { 1o } × 𝐶 ) ∈ V ) |
| 6 | domrefg | ⊢ ( ( { 1o } × 𝐶 ) ∈ V → ( { 1o } × 𝐶 ) ≼ ( { 1o } × 𝐶 ) ) | |
| 7 | 5 6 | syl | ⊢ ( 𝐶 ∈ 𝑉 → ( { 1o } × 𝐶 ) ≼ ( { 1o } × 𝐶 ) ) |
| 8 | xp01disjl | ⊢ ( ( { ∅ } × 𝐵 ) ∩ ( { 1o } × 𝐶 ) ) = ∅ | |
| 9 | undom | ⊢ ( ( ( ( { ∅ } × 𝐴 ) ≼ ( { ∅ } × 𝐵 ) ∧ ( { 1o } × 𝐶 ) ≼ ( { 1o } × 𝐶 ) ) ∧ ( ( { ∅ } × 𝐵 ) ∩ ( { 1o } × 𝐶 ) ) = ∅ ) → ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐶 ) ) ≼ ( ( { ∅ } × 𝐵 ) ∪ ( { 1o } × 𝐶 ) ) ) | |
| 10 | 8 9 | mpan2 | ⊢ ( ( ( { ∅ } × 𝐴 ) ≼ ( { ∅ } × 𝐵 ) ∧ ( { 1o } × 𝐶 ) ≼ ( { 1o } × 𝐶 ) ) → ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐶 ) ) ≼ ( ( { ∅ } × 𝐵 ) ∪ ( { 1o } × 𝐶 ) ) ) |
| 11 | 2 7 10 | syl2an | ⊢ ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ 𝑉 ) → ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐶 ) ) ≼ ( ( { ∅ } × 𝐵 ) ∪ ( { 1o } × 𝐶 ) ) ) |
| 12 | df-dju | ⊢ ( 𝐴 ⊔ 𝐶 ) = ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐶 ) ) | |
| 13 | df-dju | ⊢ ( 𝐵 ⊔ 𝐶 ) = ( ( { ∅ } × 𝐵 ) ∪ ( { 1o } × 𝐶 ) ) | |
| 14 | 11 12 13 | 3brtr4g | ⊢ ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ 𝑉 ) → ( 𝐴 ⊔ 𝐶 ) ≼ ( 𝐵 ⊔ 𝐶 ) ) |