This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The disjoint union of sets is a set. For a shorter proof using djuss see djuexALT . (Contributed by AV, 28-Jun-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | djuex | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ⊔ 𝐵 ) ∈ V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dju | ⊢ ( 𝐴 ⊔ 𝐵 ) = ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐵 ) ) | |
| 2 | snex | ⊢ { ∅ } ∈ V | |
| 3 | 2 | a1i | ⊢ ( 𝐵 ∈ 𝑊 → { ∅ } ∈ V ) |
| 4 | xpexg | ⊢ ( ( { ∅ } ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( { ∅ } × 𝐴 ) ∈ V ) | |
| 5 | 3 4 | sylan | ⊢ ( ( 𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ) → ( { ∅ } × 𝐴 ) ∈ V ) |
| 6 | 5 | ancoms | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( { ∅ } × 𝐴 ) ∈ V ) |
| 7 | snex | ⊢ { 1o } ∈ V | |
| 8 | 7 | a1i | ⊢ ( 𝐴 ∈ 𝑉 → { 1o } ∈ V ) |
| 9 | xpexg | ⊢ ( ( { 1o } ∈ V ∧ 𝐵 ∈ 𝑊 ) → ( { 1o } × 𝐵 ) ∈ V ) | |
| 10 | 8 9 | sylan | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( { 1o } × 𝐵 ) ∈ V ) |
| 11 | unexg | ⊢ ( ( ( { ∅ } × 𝐴 ) ∈ V ∧ ( { 1o } × 𝐵 ) ∈ V ) → ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐵 ) ) ∈ V ) | |
| 12 | 6 10 11 | syl2anc | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐵 ) ) ∈ V ) |
| 13 | 1 12 | eqeltrid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ⊔ 𝐵 ) ∈ V ) |