This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two sets are equinumerous, then their power sets are equinumerous. Proposition 10.15 of TakeutiZaring p. 87. (Contributed by NM, 29-Jan-2004) (Revised by Mario Carneiro, 9-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pwen | ⊢ ( 𝐴 ≈ 𝐵 → 𝒫 𝐴 ≈ 𝒫 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relen | ⊢ Rel ≈ | |
| 2 | 1 | brrelex1i | ⊢ ( 𝐴 ≈ 𝐵 → 𝐴 ∈ V ) |
| 3 | pw2eng | ⊢ ( 𝐴 ∈ V → 𝒫 𝐴 ≈ ( 2o ↑m 𝐴 ) ) | |
| 4 | 2 3 | syl | ⊢ ( 𝐴 ≈ 𝐵 → 𝒫 𝐴 ≈ ( 2o ↑m 𝐴 ) ) |
| 5 | 2onn | ⊢ 2o ∈ ω | |
| 6 | 5 | elexi | ⊢ 2o ∈ V |
| 7 | 6 | enref | ⊢ 2o ≈ 2o |
| 8 | mapen | ⊢ ( ( 2o ≈ 2o ∧ 𝐴 ≈ 𝐵 ) → ( 2o ↑m 𝐴 ) ≈ ( 2o ↑m 𝐵 ) ) | |
| 9 | 7 8 | mpan | ⊢ ( 𝐴 ≈ 𝐵 → ( 2o ↑m 𝐴 ) ≈ ( 2o ↑m 𝐵 ) ) |
| 10 | 1 | brrelex2i | ⊢ ( 𝐴 ≈ 𝐵 → 𝐵 ∈ V ) |
| 11 | pw2eng | ⊢ ( 𝐵 ∈ V → 𝒫 𝐵 ≈ ( 2o ↑m 𝐵 ) ) | |
| 12 | ensym | ⊢ ( 𝒫 𝐵 ≈ ( 2o ↑m 𝐵 ) → ( 2o ↑m 𝐵 ) ≈ 𝒫 𝐵 ) | |
| 13 | 10 11 12 | 3syl | ⊢ ( 𝐴 ≈ 𝐵 → ( 2o ↑m 𝐵 ) ≈ 𝒫 𝐵 ) |
| 14 | entr | ⊢ ( ( ( 2o ↑m 𝐴 ) ≈ ( 2o ↑m 𝐵 ) ∧ ( 2o ↑m 𝐵 ) ≈ 𝒫 𝐵 ) → ( 2o ↑m 𝐴 ) ≈ 𝒫 𝐵 ) | |
| 15 | 9 13 14 | syl2anc | ⊢ ( 𝐴 ≈ 𝐵 → ( 2o ↑m 𝐴 ) ≈ 𝒫 𝐵 ) |
| 16 | entr | ⊢ ( ( 𝒫 𝐴 ≈ ( 2o ↑m 𝐴 ) ∧ ( 2o ↑m 𝐴 ) ≈ 𝒫 𝐵 ) → 𝒫 𝐴 ≈ 𝒫 𝐵 ) | |
| 17 | 4 15 16 | syl2anc | ⊢ ( 𝐴 ≈ 𝐵 → 𝒫 𝐴 ≈ 𝒫 𝐵 ) |